Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1986 Aug;6(8):2963–2968. doi: 10.1128/mcb.6.8.2963

Isolation of mip (microtubule-interacting protein) mutations of Aspergillus nidulans.

C F Weil, C E Oakley, B R Oakley
PMCID: PMC367866  PMID: 3537728

Abstract

We identified four mutations in two previously undescribed loci involved in microtubule function in Aspergillus nidulans as extragenic suppressors of benA33, a heat-sensitive beta-tubulin mutation. Three of the four mutations map to a locus closely linked to riboB on linkage group VIII; we designated this locus mipA (for microtubule-interacting protein). We were not able to map the remaining suppressor because of chromosomal rearrangements. However, since it recombines with riboB at a significantly higher frequency than the mipA alleles, it is unlikely to be in mipA; thus, we designated it mipB1. The mip mutations are not allelic to the previously identified loci that encode alpha- and beta-tubulin, and it is likely that mipA and mipB encode previously unidentified nontubulin proteins involved in microtubule function. Each of the mip mutations suppresses the heat sensitivity conferred by benA33 and suppresses the blockage of nuclear division and movement conferred by this mutation at high temperatures. Interactions between mipA and benA are allele specific. All of the mipA mutations are cryptic in a wild-type benA background but cause cold sensitivity in combination with benA33. These mutations also confer cold sensitivity in combination with benA31 and benA32 and reduce the resistance conferred by these mutations to the antimicrotubule agent benomyl but do not suppress the heat sensitivity conferred by these alleles. Finally, the mipA alleles suppress the heat sensitivity conferred by benA11, benA17, and benA21 but do not confer cold sensitivity in combination with these alleles.

Full text

PDF
2963

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Thompson W. C., Wilson L., Dresden C. F., Schulman H., Purich D. L. Microtubule-associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubules in vitro but stains stress fibers and not microtubules in vivo. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1434–1438. doi: 10.1073/pnas.82.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gambino J., Bergen L. G., Morris N. R. Effects of mitotic and tubulin mutations on microtubule architecture in actively growing protoplasts of Aspergillus nidulans. J Cell Biol. 1984 Sep;99(3):830–838. doi: 10.1083/jcb.99.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jarvik J., Botstein D. Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2738–2742. doi: 10.1073/pnas.72.7.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. May G. S., Gambino J., Weatherbee J. A., Morris N. R. Identification and functional analysis of beta-tubulin genes by site specific integrative transformation in Aspergillus nidulans. J Cell Biol. 1985 Sep;101(3):712–719. doi: 10.1083/jcb.101.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Morris N. R., Lai M. H., Oakley C. E. Identification of a gene for alpha-tubulin in Aspergillus nidulans. Cell. 1979 Feb;16(2):437–442. doi: 10.1016/0092-8674(79)90019-9. [DOI] [PubMed] [Google Scholar]
  6. Oakley B. R., Morris N. R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell. 1981 Jun;24(3):837–845. doi: 10.1016/0092-8674(81)90109-4. [DOI] [PubMed] [Google Scholar]
  7. Oakley B. R., Oakley C. E., Kniepkamp K. S., Rinehart J. E. Isolation and characterization of cold-sensitive mutations at the benA, beta-tubulin, locus of Aspergillus nidulans. Mol Gen Genet. 1985;201(1):56–64. doi: 10.1007/BF00397987. [DOI] [PubMed] [Google Scholar]
  8. Oakley B. R., Rinehart J. E. Mitochondria and nuclei move by different mechanisms in Aspergillus nidulans. J Cell Biol. 1985 Dec;101(6):2392–2397. doi: 10.1083/jcb.101.6.2392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Weatherbee J. A., Morris N. R. Aspergillus contains multiple tubulin genes. J Biol Chem. 1984 Dec 25;259(24):15452–15459. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES