Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1987 Sep;7(9):3098–3106. doi: 10.1128/mcb.7.9.3098

Cyclic AMP-dependent protein kinase regulates sensitivity of cells to multiple drugs.

I Abraham 1, R J Hunter 1, K E Sampson 1, S Smith 1, M M Gottesman 1, J K Mayo 1
PMCID: PMC367942  PMID: 2823117

Abstract

The isolation of mutant cell lines affecting the activity of cyclic AMP (cAMP)-dependent protein kinase (PK-A) has made it possible to determine the function of this kinase in mammalian cells. We found that both a CHO cell mutant with a defective regulatory subunit (RI) for PK-A and a transfectant cell line expressing the same mutant kinase were sensitive to multiple drugs, including puromycin, adriamycin, actinomycin D, and some antimitotic drugs. The mutant and transfectant cells, after treatment with a concentration of the antimitotic drug colcemid that had no marked effect on the wild-type parent cell, had a severely disrupted microtubule network. The phenotype of hypersensitivity to the antimitotic drug colcemid was used to select revertants of the transfectant and the original mutant. These revertants simultaneously regained normal multiple drug resistance and cAMP sensitivity, thus establishing that the characteristics of colcemid sensitivity and cAMP resistance are linked. Four revertants of the transfectant reverted because of loss or rearrangement of the transfected mutant RI gene. These revertants, as well as one revertant selected from the original mutant, had PK-A activities equal to or higher than that of the parent. In these genetic studies, in which linkage of expression of a PK-A mutation with drug sensitivity is demonstrated, it was established that the PK-A system is involved in regulating resistance of mammalian cells to multiple drugs.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Brill S., Hyde J., Fleischmann R., Chapman M., Gottesman M. M. DNA-mediated gene transfer of a mutant regulatory subunit of cAMP-dependent protein kinase. J Biol Chem. 1985 Nov 15;260(26):13934–13940. [PubMed] [Google Scholar]
  2. Abraham I., Dion R. L., Chi D. M., Gottesman M. M., Hamel E. 2,4-Dichlorobenzyl thiocyanate, an antimitotic agent that alters microtubule morphology. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6839–6843. doi: 10.1073/pnas.83.18.6839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abraham I., Tyagi J. S., Gottesman M. M. Transfer of genes to Chinese hamster ovary cells by DNA-mediated transformation. Somatic Cell Genet. 1982 Jan;8(1):23–39. doi: 10.1007/BF01538648. [DOI] [PubMed] [Google Scholar]
  4. Carlsen S. V., Till J. E., Ling V. Modulation of drug permeability in Chinese hamster ovary cells. Possible role for phosphorylation of surface glycoproteins. Biochim Biophys Acta. 1977 Jun 2;467(2):238–250. doi: 10.1016/0005-2736(77)90199-7. [DOI] [PubMed] [Google Scholar]
  5. Center M. S. Mechanisms regulating cell resistance to adriamycin. Evidence that drug accumulation in resistant cells is modulated by phosphorylation of a plasma membrane glycoprotein. Biochem Pharmacol. 1985 May 1;34(9):1471–1476. doi: 10.1016/0006-2952(85)90686-0. [DOI] [PubMed] [Google Scholar]
  6. Corbin J. D., Reimann E. M. Assay of cyclic AMP-dependent protein kinases. Methods Enzymol. 1974;38:287–290. doi: 10.1016/0076-6879(74)38044-5. [DOI] [PubMed] [Google Scholar]
  7. Erlichman J., Sarkar D., Fleischer N., Rubin C. S. Identification of two subclasses of type II cAMP-dependent protein kinases. Neural-specific and non-neural protein kinases. J Biol Chem. 1980 Sep 10;255(17):8179–8184. [PubMed] [Google Scholar]
  8. Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem. 1982 Feb;12(2):133–186. doi: 10.3109/10409238209108705. [DOI] [PubMed] [Google Scholar]
  9. Garman D., Albers L., Center M. S. Identification and characterization of a plasma membrane phosphoprotein which is present in Chinese hamster lung cells resistant to adriamycin. Biochem Pharmacol. 1983 Dec 1;32(23):3633–3637. doi: 10.1016/0006-2952(83)90315-5. [DOI] [PubMed] [Google Scholar]
  10. Gottesman M. M., LeCam A., Bukowski M., Pastan I. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Genet. 1980 Jan;6(1):45–61. doi: 10.1007/BF01538695. [DOI] [PubMed] [Google Scholar]
  11. Hall J. L., Dudley L., Dobner P. R., Lewis S. A., Cowan N. J. Identification of two human beta-tubulin isotypes. Mol Cell Biol. 1983 May;3(5):854–862. doi: 10.1128/mcb.3.5.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemmings B. A. Regulation of cAMP-dependent protein kinase in cultured cells. Curr Top Cell Regul. 1985;27:117–132. doi: 10.1016/b978-0-12-152827-0.50017-7. [DOI] [PubMed] [Google Scholar]
  13. Jahnsen T., Lohmann S. M., Walter U., Hedin L., Richards J. S. Purification and characterization of hormone-regulated isoforms of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovaries. J Biol Chem. 1985 Dec 15;260(29):15980–15987. [PubMed] [Google Scholar]
  14. Kartner N., Riordan J. R., Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science. 1983 Sep 23;221(4617):1285–1288. doi: 10.1126/science.6137059. [DOI] [PubMed] [Google Scholar]
  15. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  16. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LeCam A., Gottesman M. M., Pastan I. Mechanism of cyclic AMP effect on nutrient transport in Chinese hamster ovary cells. A genetic approach. J Biol Chem. 1980 Sep 10;255(17):8103–8108. [PubMed] [Google Scholar]
  18. LeCam A., Nicolas J. C., Singh T. J., Cabral F., Pastan I., Gottesman M. M. Cyclic AMP-dependent phosphorylation in intact cells and in cell-free extracts from Chinese hamster ovary cells. Studies with wild type and cyclic AMP-resistant mutants. J Biol Chem. 1981 Jan 25;256(2):933–941. [PubMed] [Google Scholar]
  19. Lee D. C., Carmichael D. F., Krebs E. G., McKnight G. S. Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3608–3612. doi: 10.1073/pnas.80.12.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lichti U., Gottesman M. M. Genetic evidence that a phorbol ester tumor promoter stimulates ornithine decarboxylase activity by a pathway that is independent of cyclic AMP-dependent protein kinases in CHO cells. J Cell Physiol. 1982 Dec;113(3):433–439. doi: 10.1002/jcp.1041130312. [DOI] [PubMed] [Google Scholar]
  21. Lohmann S. M., Walter U. Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;18:63–117. [PubMed] [Google Scholar]
  22. Martin-Pérez J., Siegmann M., Thomas G. EGF, PGF2 alpha and insulin induce the phosphorylation of identical S6 peptides in swiss mouse 3T3 cells: effect of cAMP on early sites of phosphorylation. Cell. 1984 Feb;36(2):287–294. doi: 10.1016/0092-8674(84)90222-8. [DOI] [PubMed] [Google Scholar]
  23. Milhaud P. G., Davies P. J., Pastan I., Gottesman M. M. Regulation of transglutaminase activity in Chinese hamster ovary cells. Biochim Biophys Acta. 1980 Jul 15;630(4):476–484. doi: 10.1016/0304-4165(80)90002-1. [DOI] [PubMed] [Google Scholar]
  24. Robinson-Steiner A. M., Beebe S. J., Rannels S. R., Corbin J. D. Microheterogeneity of type II cAMP-dependent protein kinase in various mammalian species and tissues. J Biol Chem. 1984 Aug 25;259(16):10596–10605. [PubMed] [Google Scholar]
  25. Showers M. O., Maurer R. A. A cloned bovine cDNA encodes an alternate form of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1986 Dec 15;261(35):16288–16291. [PubMed] [Google Scholar]
  26. Singh T. J., Hochman J., Verna R., Chapman M., Abraham I., Pastan I. H., Gottesman M. M. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase. J Biol Chem. 1985 Nov 15;260(26):13927–13933. [PubMed] [Google Scholar]
  27. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  28. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  29. Theurkauf W. E., Vallee R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25;257(6):3284–3290. [PubMed] [Google Scholar]
  30. Uhler M. D., Carmichael D. F., Lee D. C., Chrivia J. C., Krebs E. G., McKnight G. S. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1300–1304. doi: 10.1073/pnas.83.5.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vallee R. B., DiBartolomeis M. J., Theurkauf W. E. A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol. 1981 Sep;90(3):568–576. doi: 10.1083/jcb.90.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wiener E. C., Loewenstein W. R. Correction of cell-cell communication defect by introduction of a protein kinase into mutant cells. 1983 Sep 29-Oct 5Nature. 305(5933):433–435. doi: 10.1038/305433a0. [DOI] [PubMed] [Google Scholar]
  33. Willingham M. C., Cornwell M. M., Cardarelli C. O., Gottesman M. M., Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res. 1986 Nov;46(11):5941–5946. [PubMed] [Google Scholar]
  34. Witt J. J., Roskoski R., Jr Rapid protein kinase assay using phosphocellulose-paper absorption. Anal Biochem. 1975 May 26;66(1):253–258. doi: 10.1016/0003-2697(75)90743-5. [DOI] [PubMed] [Google Scholar]
  35. van Daalen Wetters T., Coffino P. Revertants of an S49 cell mutant that expresses altered cyclic AMP-dependent protein kinase. Mol Cell Biol. 1982 Oct;2(10):1229–1237. doi: 10.1128/mcb.2.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES