Skip to main content
BMC Microbiology logoLink to BMC Microbiology
. 2013 Jun 6;13:127. doi: 10.1186/1471-2180-13-127

Correction: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

Sofia Santos Costa 1,2, Celeste Falcão 1, Miguel Viveiros 1,3, Diana Machado 1,4, Marta Martins 1,4,5, José Melo-Cristino 6, Leonard Amaral 1,3,4, Isabel Couto 1,2,
PMCID: PMC3679801

After the publication of our study [1], we became aware that the mutations in the quinolone resistance-determining region (QRDR) of the gene grlA were incorrectly described for some of the Staphylococcus aureus clinical isolates studied in this work. In particular, isolates SM1, SM10, SM14, SM17, SM25, SM27, SM43, SM46, SM47 and SM48 carry the GrlA double mutation S80Y/E84G; isolate SM52 carries the GrlA mutation S80Y; isolates SM3 and SM5 carry the GrlA double mutation S80F/E84G. The correct data can be found in Table 1.

Table 1.

Genotypic and phenotypic characterization of S. aureus clinical isolates

 
 
QRDR mutationsb
MIC (mg/L)c
 
 
 
 
EtBr
CIP
NOR
NAL
Isolatea PFGE pattern GrlA GyrA No
+
+
No
+
+
No
+
+
No
+
+
EI TZ CPZ EI TZ CPZ EI TZ CPZ EI TZ CPZ
ATCC25923
-
WT
WT
6.25
0.75
0.75
0.25
0.125
0.125
0.5
0.125
0.125
64
n.d.
n.d.
ATCC25923EtBr
-
WT
WT
200
25
12.5
1
0.25
0.25
2
0.25
0.25
64
n.d.
n.d.
SM1
A2
S80Y/E84G
S84L
16
4
4
128
32
64
512
128
256
256
64
64
SM10
A4
S80Y/E84G
S84L
16
2
4
128
64
64
512
128
128
128
64
64
SM14
A3
S80Y/E84G
S84L
16
4
4
256
32
128
1024
128
256
256
64
64
SM17
A4
S80Y/E84G
S84L
16
4
4
256
64
64
1024
256
512
256
64
64
SM25
A1
S80Y/E84G
S84L
8
2
4
128
32
64
512
64
128
256
32
64
SM27
A4
S80Y/E84G
S84L
16
4
4
256
32
64
512
128
256
256
64
64
SM43
A1
S80Y/E84G
S84L
16
2
4
128
64
64
512
128
128
512
256
64
SM46
A1
S80Y/E84G
S84L
16
4
4
128
64
64
512
128
256
128
64
64
SM47
A1
S80Y/E84G
S84L
8
2
4
256
32
64
512
128
256
256
64
64
SM48
A1
S80Y/E84G
S84L
8
4
4
256
32
64
512
128
256
256
64
64
SM50
B1
S80F/E84K
S84L
8
1
2
64
16
16
256
32
64
128
64
64
SM52
C1
S80Y
S84L
16
1
2
16
8
8
64
32
32
128
32
64
SM2
B2
S80F/E84K
S84L
8
2
2
32
16
16
128
32
32
64
16
64
SM3
E1
S80F/E84G
S84L
1
1
1
16
8
8
64
32
32
64
16
16
SM4
E2
S80F
S84L
4
2
1
8
8
8
64
32
32
64
32
64
SM5
E3
S80F/E84G
S84L
4
2
1
32
16
16
128
64
64
64
32
32
SM6
A5
S80F
E88K
4
2
1
16
16
16
64
32
32
64
32
32
SM7
E1
S80F
S84L
2
2
1
8
8
4
64
32
32
128
32
64
SM8
A5
S80F
E88K
4
2
1
16
8
16
128
64
64
128
32
64
SM12
E1
S80F
S84L
2
2
1
16
8
8
64
32
32
128
32
64
SM16
A6
S80F
E88K
4
2
1
16
16
16
128
32
64
64
32
64
SM22
A1
S80Y/E84G
S84L
8
4
4
128
16
32
512
128
128
64
32
64
SM34
D1
S80F/E84K
S84L
4
2
2
64
16
32
64
16
32
32
16
32
SM36
E1
S80F
S84L
4
2
2
16
8
8
64
16
32
128
32
64
SM40 E1 S80F S84L 8 4 4 32 32 32 512 128 128 16 8 16

aIsolates in bold correspond to the EtBrCW-positive isolates. bWT: wild-type; S: serine; F: phenylalanine; E: glutamate; K: lysine; Y: tyrosine; L: leucine; G: glycine. cValues in bold-type correspond to a MIC decrease of ≥ four-fold in the presence of the efflux inhibitor (EI) in comparison to the values with no EI [10]. The concentration of each EI used is defined in the Methods section. EtBr: ethidium bromide; CIP: ciprofloxacin; NOR: norfloxacin; NAL: nalidixic acid; TZ: thioridazine; CPZ: chlorpromazine; n.d.: not determined.

All clinical isolates included in this study were selected upon a ciprofloxacin resistance phenotype and all the 25 representative isolates screened for mutations conferring fluoroquinolone resistance carried QRDR mutations in both grlA and gyrA genes. All the mutations found have been described in literature as associated with fluoroquinolone resistance in S. aureus clinical isolates [2]. As stated previously in our study, the majority of the isolates presented a double mutation in GrlA together with a single mutation in GyrA. Eleven isolates carried the GrlA and GyrA mutations S80Y/E84G and S84L, respectively; three isolates carried mutations GrlA S80F/E84K and GyrA S84L and two isolates carried mutations GrlA S80F/E84G and GyrA S84L.The remaining nine isolates carried a single mutation in both genes, in three distinct arrangements (Table 1).

Despite this correction in the QRDR mutations carried by some of the isolates studied, the main findings of our study are not altered. In particular, our data show the potential role played by efflux systems in the development of resistance to fluoroquinolones in clinical isolates of S. aureus, independently of the mutations occurring in the target genes.

We apologize for any inconvenience that this may have caused to the readers.

Contributor Information

Sofia Santos Costa, Email: scosta@ihmt.unl.pt.

Celeste Falcão, Email: celestefalcao@quilaban.pt.

Miguel Viveiros, Email: MViveiros@ihmt.unl.pt.

Diana Machado, Email: DianaMachado@ihmt.unl.pt.

Marta Martins, Email: marta.martins@ucd.ie.

José Melo-Cristino, Email: melo_cristino@fm.ul.pt.

Leonard Amaral, Email: LAmaral@ihmt.unl.pt.

Isabel Couto, Email: icouto@ihmt.unl.pt.

References

  1. Costa SS, Falcão C, Viveiros M, Machado D, Martins M, Melo-Cristino J, Amaral L, Couto I. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011;11:241. doi: 10.1186/1471-2180-11-241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999;2:38–55. doi: 10.1054/drup.1998.0068. [DOI] [PubMed] [Google Scholar]

Articles from BMC Microbiology are provided here courtesy of BMC

RESOURCES