Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1987 Nov;7(11):3863–3870. doi: 10.1128/mcb.7.11.3863

Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation.

B W Birren 1, S J Taplitz 1, H R Herschman 1
PMCID: PMC368053  PMID: 3431545

Abstract

We examined in the H4IIE rat hepatoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequences to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

Full text

PDF
3863

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. D., Birren B. W., Ganz T., Piletz J. E., Herschman H. R. Molecular cloning of the rat metallothionein 1 (MT-1) mRNA sequence. DNA. 1983;2(1):15–22. doi: 10.1089/dna.1.1983.2.15. [DOI] [PubMed] [Google Scholar]
  2. Andersen R. D., Birren B. W., Taplitz S. J., Herschman H. R. Rat metallothionein-1 structural gene and three pseudogenes, one of which contains 5'-regulatory sequences. Mol Cell Biol. 1986 Jan;6(1):302–314. doi: 10.1128/mcb.6.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellard M., Gannon F., Chambon P. Nucleosome structure III: the structure and transcriptional activity of the chromatin containing the ovalbumin and globin genes in chick oviduct nuclei. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):779–791. doi: 10.1101/sqb.1978.042.01.078. [DOI] [PubMed] [Google Scholar]
  4. Birren B. W., Herschman H. R. Regulation of the rat metallothionein-I gene by sodium butyrate. Nucleic Acids Res. 1986 Jan 24;14(2):853–867. doi: 10.1093/nar/14.2.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloom K. S., Anderson J. N. Conformation of ovalbumin and globin genes in chromatin during differential gene expression. J Biol Chem. 1979 Oct 25;254(20):10532–10539. [PubMed] [Google Scholar]
  6. Boffa L. C., Gruss R. J., Allfrey V. G. Manifold effects of sodium butyrate on nuclear function. Selective and reversible inhibition of phosphorylation of histones H1 and H2A and impaired methylation of lysine and arginine residues in nuclear protein fractions. J Biol Chem. 1981 Sep 25;256(18):9612–9621. [PubMed] [Google Scholar]
  7. Cousens L. S., Gallwitz D., Alberts B. M. Different accessibilities in chromatin to histone acetylase. J Biol Chem. 1979 Mar 10;254(5):1716–1723. [PubMed] [Google Scholar]
  8. Covault J., Chalkley R. The identification of distinct populations of acetylated histone. J Biol Chem. 1980 Oct 10;255(19):9110–9116. [PubMed] [Google Scholar]
  9. Covault J., Perry M., Chalkley R. Effects of histone hyperacetylation and hypoacetylation on RNA synthesis in HTC cells. J Biol Chem. 1982 Nov 25;257(22):13433–13440. [PubMed] [Google Scholar]
  10. D'Anna J. A., Gurley L. R., Becker R. R., Barham S. S., Tobey R. A., Walters R. A. Amino acid analysis and cell cycle dependent phosphorylation of an H1-like, butyrate-enhanced protein (BEP; H1(0); IP25) from Chinese hamster cells. Biochemistry. 1980 Sep 2;19(18):4331–4341. doi: 10.1021/bi00559a029. [DOI] [PubMed] [Google Scholar]
  11. Darnell R. B. Independent regulation by sodium butyrate of gonadotropin alpha gene expression and cell cycle progression in HeLa cells. Mol Cell Biol. 1984 May;4(5):829–839. doi: 10.1128/mcb.4.5.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deschatrette J., Weiss M. C. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie. 1974;56(11-12):1603–1611. doi: 10.1016/s0300-9084(75)80286-0. [DOI] [PubMed] [Google Scholar]
  13. Ferenz C. R., Nelson D. A. N-Butyrate incubation of immature chicken erythrocytes preferentially enhances the solubility of beta A chromatin. Nucleic Acids Res. 1985 Mar 25;13(6):1977–1995. doi: 10.1093/nar/13.6.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flint S. J., Weintraub H. M. An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus genes. Cell. 1977 Nov;12(3):783–794. doi: 10.1016/0092-8674(77)90277-x. [DOI] [PubMed] [Google Scholar]
  15. Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gazit B., Cedar H. Nuclease sensitivity of active chromatin. Nucleic Acids Res. 1980 Nov 25;8(22):5143–5155. doi: 10.1093/nar/8.22.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gross-Bellard M., Oudet P., Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x. [DOI] [PubMed] [Google Scholar]
  18. Kitzis A., Tichonicky L., Defer N., Kruh J. Localization of phosphoproteins and of protein kinases in chromatin from butyrate treated HTC cells. Biochem Biophys Res Commun. 1980 Nov 28;97(2):530–537. doi: 10.1016/0006-291x(80)90296-x. [DOI] [PubMed] [Google Scholar]
  19. Koropatnick J., Andrews G., Duerksen J. D., Varshney U., Gedamu L. Mouse hepatic metallothionein-I gene cleavage by micrococcal nuclease is enhanced after induction by cadmium. Nucleic Acids Res. 1983 May 25;11(10):3255–3267. doi: 10.1093/nar/11.10.3255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem. 1982 Feb 5;42(2):65–82. doi: 10.1007/BF00222695. [DOI] [PubMed] [Google Scholar]
  21. Lasky L., Nozick N. D., Tobin A. J. Few transcribed RNAs are translated in avian erythroid cells. Dev Biol. 1978 Nov;67(1):23–39. doi: 10.1016/0012-1606(78)90297-x. [DOI] [PubMed] [Google Scholar]
  22. Leibovitch M. P., Leibovitch S. A., Harel J., Kruh J. Effect of sodium butyrate on messenger RNA populations in myogenic cells in culture. Differentiation. 1982;22(2):106–112. doi: 10.1111/j.1432-0436.1982.tb01233.x. [DOI] [PubMed] [Google Scholar]
  23. Levy-Wilson B. Enhanced phosphorylation of high-mobility-group proteins in nuclease-sensitive mononucleosomes from butyrate-treated HeLa cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2189–2193. doi: 10.1073/pnas.78.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nelson D. A., Perry W. M., Chalkley R. Sensitivity of regions of chromatin containing hyperacetylated histones to DNAse I. Biochem Biophys Res Commun. 1978 May 15;82(1):365–363. doi: 10.1016/0006-291x(78)90617-4. [DOI] [PubMed] [Google Scholar]
  25. Perry M., Chalkley R. The effect of histone hyperacetylation on the nuclease sensitivity and the solubility of chromatin. J Biol Chem. 1981 Apr 10;256(7):3313–3318. [PubMed] [Google Scholar]
  26. Prasad K. N., Sinha P. K. Effect of sodium butyrate on mammalian cells in culture: a review. In Vitro. 1976 Feb;12(2):125–132. doi: 10.1007/BF02796360. [DOI] [PubMed] [Google Scholar]
  27. Reeves R. Nucleosome structure of Xenopus oocyte amplified ribosomal genes. Biochemistry. 1978 Nov 14;17(23):4908–4916. doi: 10.1021/bi00616a008. [DOI] [PubMed] [Google Scholar]
  28. Rougeon F., Mach B. Cloning and amplification of alpha and beta mouse globin gene sequences synthesised in vitro. Gene. 1977 May;1(3-4):229–239. doi: 10.1016/0378-1119(77)90047-6. [DOI] [PubMed] [Google Scholar]
  29. Rubin C. M., Houck C. M., Deininger P. L., Friedmann T., Schmid C. W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980 Mar 27;284(5754):372–374. doi: 10.1038/284372a0. [DOI] [PubMed] [Google Scholar]
  30. Sealy L., Chalkley R. DNA associated with hyperacetylated histone is preferentially digested by DNase I. Nucleic Acids Res. 1978 Jun;5(6):1863–1876. doi: 10.1093/nar/5.6.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simpson R. T. Structure of chromatin containing extensively acetylated H3 and H4. Cell. 1978 Apr;13(4):691–699. doi: 10.1016/0092-8674(78)90219-2. [DOI] [PubMed] [Google Scholar]
  32. Stumph W. E., Baez M., Beattie W. G., Tsai M. J., O'Malley B. W. Characterization of deoxyribonucleic acid sequences at the 5' and 3' borders of the 100 kilobase pair ovalbumin gene domain. Biochemistry. 1983 Jan 18;22(2):306–315. doi: 10.1021/bi00271a012. [DOI] [PubMed] [Google Scholar]
  33. Taplitz S. J., Calame K. L., Herschman H. R. Alternative inducers of the rat metallothionein I gene cause distinct changes in chromatin structure in the 5' region of the gene. Mol Cell Biol. 1986 Jul;6(7):2576–2581. doi: 10.1128/mcb.6.7.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tobin A. J., Selvig S. E., Lasky L. RNA synthesis in avian erythroid cells. Dev Biol. 1978 Nov;67(1):11–22. doi: 10.1016/0012-1606(78)90296-8. [DOI] [PubMed] [Google Scholar]
  36. Vidali G., Boffa L. C., Bradbury E. M., Allfrey V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci U S A. 1978 May;75(5):2239–2243. doi: 10.1073/pnas.75.5.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985 Oct;42(3):705–711. doi: 10.1016/0092-8674(85)90267-3. [DOI] [PubMed] [Google Scholar]
  38. Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
  39. Whitlock J. P., Jr, Augustine R., Schulman H. Calcium-dependent phosphorylation of histone H3 in butyrate-treated HeLa cells. Nature. 1980 Sep 4;287(5777):74–76. doi: 10.1038/287074a0. [DOI] [PubMed] [Google Scholar]
  40. Wong M., Smulson M. A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 2. Histone studies. Biochemistry. 1984 Jul 31;23(16):3726–3730. doi: 10.1021/bi00311a024. [DOI] [PubMed] [Google Scholar]
  41. Yen P. M., Tashjian A. H., Jr Short chain fatty acids increase prolactin and growth hormone production and alter cell morphology in the GH3 strain of rat pituitary cells. Endocrinology. 1981 Jul;109(1):17–22. doi: 10.1210/endo-109-1-17. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES