Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1994 Jan;1(1):99–108. doi: 10.1128/cdli.1.1.99-108.1994

Murine splenic hematopoietic subpopulations: the enlarged undifferentiated subset in New Zealand black mice is multipotent stem cells.

V Manohar 1, K Huppi 1, E Lizzio 1, T Hoffman 1
PMCID: PMC368204  PMID: 7496931

Abstract

We recently reported that a significant population of the murine splenic non-T, non-B "null" cell compartment consists of non-lineage-specific, undifferentiated cells which are in the G0 and G1 phases of the cell cycle and that their numbers are particularly high in the spleens of New Zealand Black mice. A highly enriched population of these non-lineage-specific cells obtained by successive elimination of differentiated cells was further purified to homogeneity by fluorescence-activated cell sorting. The morphologic, phenotypic, and histochemical characteristics of this purified population suggest that these cells may be primitive hematopoietic stem cells. The germ line configuration of the genomic DNA establishes that these are uncommitted stem cells. In vivo, these cells form day 12 colonies in the spleen and liver of lethally irradiated recipients and confer radioprotection. These cells also differentiate into T- and B-cell lineages and reconstitute the immunodeficiency in mice with severe combined immunodeficiency. In response to a combination of a very few early-acting lymphokines and/or stromal cell-conditioned medium in vitro, these cells differentiate into both myeloid and lymphoid cell types. More of these cells are obtained from the enlarged spleens of New Zealand Black mice than from those of BALB/c mice. The presence of a comparatively higher number of stem cells in the spleen than in the marrow or fetal liver provides an alternative, and possibly superior, source of uncommitted stem cells for a variety of experimental investigations or therapeutic manipulations.

Full text

PDF
99

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthold D. R., Kysela S., Steinberg A. D. Decline in suppressor T cell function with age in female NZB mice. J Immunol. 1974 Jan;112(1):9–16. [PubMed] [Google Scholar]
  2. Chien Y. H., Iwashima M., Wettstein D. A., Kaplan K. B., Elliott J. F., Born W., Davis M. M. T-cell receptor delta gene rearrangements in early thymocytes. Nature. 1987 Dec 24;330(6150):722–727. doi: 10.1038/330722a0. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. L. Functional absence of a B cell subpopulation in ageing New Zealand mice. Clin Exp Immunol. 1980 May;40(2):365–372. [PMC free article] [PubMed] [Google Scholar]
  4. Curry J. L., Trentin J. J. Hemopoietic spleen colony studies. I. Growth and differentiation. Dev Biol. 1967 May;15(5):395–413. doi: 10.1016/0012-1606(67)90034-6. [DOI] [PubMed] [Google Scholar]
  5. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  6. Hedrick S. M., Cohen D. I., Nielsen E. A., Davis M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984 Mar 8;308(5955):149–153. doi: 10.1038/308149a0. [DOI] [PubMed] [Google Scholar]
  7. Ho M. K., Springer T. A. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982 Mar;128(3):1221–1228. [PubMed] [Google Scholar]
  8. Huppi K., D'Hoostelaere L., Kiefer M., Steinmetz M., Jouvin-Marche E. The context of T-cell receptor gamma chain genes among wild mouse species. Immunogenetics. 1986;24(5):304–308. doi: 10.1007/BF00395535. [DOI] [PubMed] [Google Scholar]
  9. Ihle J. N., Keller J., Greenberger J. S., Henderson L., Yetter R. A., Morse H. C., 3rd Phenotypic characteristics of cell lines requiring interleukin 3 for growth. J Immunol. 1982 Oct;129(4):1377–1383. [PubMed] [Google Scholar]
  10. Jones R. J., Celano P., Sharkis S. J., Sensenbrenner L. L. Two phases of engraftment established by serial bone marrow transplantation in mice. Blood. 1989 Feb;73(2):397–401. [PubMed] [Google Scholar]
  11. Jones R. J., Wagner J. E., Celano P., Zicha M. S., Sharkis S. J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990 Sep 13;347(6289):188–189. doi: 10.1038/347188a0. [DOI] [PubMed] [Google Scholar]
  12. Jordan C. T., McKearn J. P., Lemischka I. R. Cellular and developmental properties of fetal hematopoietic stem cells. Cell. 1990 Jun 15;61(6):953–963. doi: 10.1016/0092-8674(90)90061-i. [DOI] [PubMed] [Google Scholar]
  13. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kincade P. W., Lee G., Watanabe T., Sun L., Scheid M. P. Antigens displayed on murine B lymphocyte precursors. J Immunol. 1981 Dec;127(6):2262–2268. [PubMed] [Google Scholar]
  15. Lang R. B., Stanton L. W., Marcu K. B. On immunoglobulin heavy chain gene switching: two gamma 2b genes are rearranged via switch sequences in MPC-11 cells but only one is expressed. Nucleic Acids Res. 1982 Jan 22;10(2):611–630. doi: 10.1093/nar/10.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  17. Manohar V., Brown E. M., Chused T. M. Murine splenic null cell compartment contains distinct haemopoietic subpopulations: enlargement of a myeloid and an undifferentiated subset with the development of splenomegaly in New Zealand black mice. Immunology. 1992 Mar;75(3):448–455. [PMC free article] [PubMed] [Google Scholar]
  18. Manohar V., Brown E. M., Leiserson W. M., Edison L. J., Chused T. M. Ly-2+ T cell enlargement and null cell proliferation occur at the onset of splenomegaly and autoantibody production in New Zealand Black mice. J Immunol. 1984 Dec;133(6):3020–3025. [PubMed] [Google Scholar]
  19. Manohar V., Brown E., Leiserson W. M., Chused T. M. Expression of Lyt-1 by a subset of B lymphocytes. J Immunol. 1982 Aug;129(2):532–538. [PubMed] [Google Scholar]
  20. Mason L., Giardina S. L., Hecht T., Ortaldo J., Mathieson B. J. LGL-1: a non-polymorphic antigen expressed on a major population of mouse natural killer cells. J Immunol. 1988 Jun 15;140(12):4403–4412. [PubMed] [Google Scholar]
  21. McCoy K. L., Kendrick L., Chused T. M. Tolerance defects in New Zealand Black and New Zealand Black X New Zealand White F1 mice. J Immunol. 1986 Feb 15;136(4):1217–1222. [PubMed] [Google Scholar]
  22. Moutsopoulos H. M., Boehm-Truitt M., Kassan S. S., Chused T. M. Demonstration of activation of B lymphocytes in New Zealand black mice at birth by an immunoradiometric assay for murine IgM. J Immunol. 1977 Nov;119(5):1639–1644. [PubMed] [Google Scholar]
  23. Palfree R. G., Dumont F. J., Hammerling U. Ly-6A.2 and Ly-6E.1 molecules are antithetical and identical to MALA-1. Immunogenetics. 1986;23(3):197–207. doi: 10.1007/BF00373821. [DOI] [PubMed] [Google Scholar]
  24. Song Z. X., Shadduck R. K., Innes D. J., Jr, Waheed A., Quesenberry P. J. Hematopoietic factor production by a cell line (TC-1) derived from adherent murine marrow cells. Blood. 1985 Aug;66(2):273–281. [PubMed] [Google Scholar]
  25. Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
  26. Springer T. A. Monoclonal antibody analysis of complex biological systems. Combination of cell hybridization and immunoadsorbents in a novel cascade procedure and its application to the macrophage cell surface. J Biol Chem. 1981 Apr 25;256(8):3833–3839. [PubMed] [Google Scholar]
  27. Springer T., Galfré G., Secher D. S., Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979 Apr;9(4):301–306. doi: 10.1002/eji.1830090410. [DOI] [PubMed] [Google Scholar]
  28. Stanley E. R., Metcalf D., Maritz J. S., Yeo G. F. Standardized bioassay for bone marrow colony stimulating factor in human urine: levels in normal man. J Lab Clin Med. 1972 Apr;79(4):657–668. [PubMed] [Google Scholar]
  29. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  30. Theofilopoulos A. N., Dixon F. J. Etiopathogenesis of murine SLE. Immunol Rev. 1981;55:179–216. doi: 10.1111/j.1600-065x.1981.tb00343.x. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES