Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1994 Mar;1(2):150–154. doi: 10.1128/cdli.1.2.150-154.1994

Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

C Ruedl 1, M Frühwirth 1, G Wick 1, H Wolf 1
PMCID: PMC368218  PMID: 7496936

Abstract

We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E., Freitas A. A., Coutinho A. A. Purification and characterization of intraparenchymal lung lymphocytes. J Immunol. 1990 Mar 15;144(6):2117–2122. [PubMed] [Google Scholar]
  2. Abraham E. Intranasal immunization with bacterial polysaccharide containing liposomes enhances antigen-specific pulmonary secretory antibody response. Vaccine. 1992;10(7):461–468. doi: 10.1016/0264-410x(92)90395-z. [DOI] [PubMed] [Google Scholar]
  3. Bergmann K. C., Waldman R. H. Stimulation of secretory antibody following oral administration of antigen. Rev Infect Dis. 1988 Sep-Oct;10(5):939–950. doi: 10.1093/clinids/10.5.939. [DOI] [PubMed] [Google Scholar]
  4. Chen K. S., Burlington D. B., Quinnan G. V., Jr Active synthesis of hemagglutinin-specific immunoglobulin A by lung cells of mice that were immunized intragastrically with inactivated influenza virus vaccine. J Virol. 1987 Jul;61(7):2150–2154. doi: 10.1128/jvi.61.7.2150-2154.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Czerkinsky C., Svennerholm A. M., Quiding M., Jonsson R., Holmgren J. Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect Immun. 1991 Mar;59(3):996–1001. doi: 10.1128/iai.59.3.996-1001.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forrest B. D., LaBrooy J. T., Robinson P., Dearlove C. E., Shearman D. J. Specific immune response in the human respiratory tract following oral immunization with live typhoid vaccine. Infect Immun. 1991 Mar;59(3):1206–1209. doi: 10.1128/iai.59.3.1206-1209.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harriman G. R., Kunimoto D. Y., Elliott J. F., Paetkau V., Strober W. The role of IL-5 in IgA B cell differentiation. J Immunol. 1988 May 1;140(9):3033–3039. [PubMed] [Google Scholar]
  8. Helmberg A., Böck G., Wolf H., Wick G. An orally administered bacterial immunomodulator primes rabbit neutrophils for increased oxidative burst in response to opsonized zymosan. Infect Immun. 1989 Nov;57(11):3576–3580. doi: 10.1128/iai.57.11.3576-3580.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holmgren J., Clemens J., Sack D. A., Svennerholm A. M. New cholera vaccines. Vaccine. 1989 Apr;7(2):94–96. doi: 10.1016/0264-410x(89)90042-x. [DOI] [PubMed] [Google Scholar]
  10. Holmgren J., Czerkinsky C., Lycke N., Svennerholm A. M. Mucosal immunity: implications for vaccine development. Immunobiology. 1992 Feb;184(2-3):157–179. doi: 10.1016/S0171-2985(11)80473-0. [DOI] [PubMed] [Google Scholar]
  11. Husband A. J. Novel vaccination strategies for the control of mucosal infection. Vaccine. 1993;11(2):107–112. doi: 10.1016/0264-410x(93)90003-g. [DOI] [PubMed] [Google Scholar]
  12. Keren D. F., Kern S. E., Bauer D. H., Scott P. J., Porter P. Direct demonstration in intestinal secretions of an IgA memory response to orally administered Shigella flexneri antigens. J Immunol. 1982 Jan;128(1):475–479. [PubMed] [Google Scholar]
  13. Kraehenbuhl J. P., Neutra M. R. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992 Oct;72(4):853–879. doi: 10.1152/physrev.1992.72.4.853. [DOI] [PubMed] [Google Scholar]
  14. McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J. H., Hirasawa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  15. Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987 Jul;7(4):265–276. doi: 10.1007/BF00915547. [DOI] [PubMed] [Google Scholar]
  16. Mowat A. M., Donachie A. M. ISCOMS--a novel strategy for mucosal immunization? Immunol Today. 1991 Nov;12(11):383–385. doi: 10.1016/0167-5699(91)90133-E. [DOI] [PubMed] [Google Scholar]
  17. Murray P. D., McKenzie D. T., Swain S. L., Kagnoff M. F. Interleukin 5 and interleukin 4 produced by Peyer's patch T cells selectively enhance immunoglobulin A expression. J Immunol. 1987 Oct 15;139(8):2669–2674. [PubMed] [Google Scholar]
  18. Möller S. A., Borrebaeck C. A. A filter immuno-plaque assay for the detection of antibody-secreting cells in vitro. J Immunol Methods. 1985 May 23;79(2):195–204. doi: 10.1016/0022-1759(85)90099-7. [DOI] [PubMed] [Google Scholar]
  19. O'Hagan D. T., Jeffery H., Roberts M. J., McGee J. P., Davis S. S. Controlled release microparticles for vaccine development. Vaccine. 1991 Oct;9(10):768–771. doi: 10.1016/0264-410x(91)90295-h. [DOI] [PubMed] [Google Scholar]
  20. O'Hagan D. T., McGee J. P., Holmgren J., Mowat A. M., Donachie A. M., Mills K. H., Gaisford W., Rahman D., Challacombe S. J. Biodegradable microparticles for oral immunization. Vaccine. 1993;11(2):149–154. doi: 10.1016/0264-410x(93)90011-l. [DOI] [PubMed] [Google Scholar]
  21. O'Hagan D. T. Oral delivery of vaccines. Formulation and clinical pharmacokinetic considerations. Clin Pharmacokinet. 1992 Jan;22(1):1–10. doi: 10.2165/00003088-199222010-00001. [DOI] [PubMed] [Google Scholar]
  22. Ogawa T., Kusumoto Y., Kiyono H., McGhee J. R., Hamada S. Occurrence of antigen-specific B cells following oral or parenteral immunization with Porphyromonas gingivalis fimbriae. Int Immunol. 1992 Sep;4(9):1003–1010. doi: 10.1093/intimm/4.9.1003. [DOI] [PubMed] [Google Scholar]
  23. Picker L. J., Butcher E. C. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol. 1992;10:561–591. doi: 10.1146/annurev.iy.10.040192.003021. [DOI] [PubMed] [Google Scholar]
  24. Quiding M., Nordström I., Kilander A., Andersson G., Hanson L. A., Holmgren J., Czerkinsky C. Intestinal immune responses in humans. Oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J Clin Invest. 1991 Jul;88(1):143–148. doi: 10.1172/JCI115270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruedl C., Albini B., Böck G., Wick G., Wolf H., Albin B. Oral administration of a bacterial immunomodulator enhances murine intestinal lamina propria and Peyer's patch lymphocyte traffic to the lung: possible implications for infectious disease prophylaxis and therapy. Int Immunol. 1993 Jan;5(1):29–36. doi: 10.1093/intimm/5.1.29. [DOI] [PubMed] [Google Scholar]
  26. Sedgwick J. D., Czerkinsky C. Detection of cell-surface molecules, secreted products of single cells and cellular proliferation by enzyme immunoassay. J Immunol Methods. 1992 Jun 24;150(1-2):159–175. doi: 10.1016/0022-1759(92)90075-5. [DOI] [PubMed] [Google Scholar]
  27. Taguchi T., McGhee J. R., Coffman R. L., Beagley K. W., Eldridge J. H., Takatsu K., Kiyono H. Analysis of Th1 and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFN-gamma and IL-5. J Immunol. 1990 Jul 1;145(1):68–77. [PubMed] [Google Scholar]
  28. Wilson A. D., Robinson A., Irons L., Stokes C. R. Adjuvant action of cholera toxin and pertussis toxin in the induction of IgA antibody response to orally administered antigen. Vaccine. 1993;11(2):113–118. doi: 10.1016/0264-410x(93)90004-h. [DOI] [PubMed] [Google Scholar]
  29. van Daal G. J., van 't Veen A., So K. L., Mouton J. W., Smit F., van Hal P. T., Bergmann K. C., Lachmann B. Oral immunization with polyvalent bacterial lysate and infection with Streptococcus pneumoniae: influence on interferon-gamma and PMN elastase concentrations in murine bronchoalveolar lavage fluid. Int Arch Allergy Immunol. 1992;97(2):173–177. doi: 10.1159/000236114. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES