Abstract
Activated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.
Key words: ALCAM, Cis elements, Endothelial cells, Epithelial cells, Hematopoietic cells, Promoter activity, Sp1, Transcriptional regulation
Full Text
The Full Text of this article is available as a PDF (617.3 KB).
Abbreviations used
- ALCAM
activated leukocyte cell adhesion molecule
- CHIP
chromatin immunoprecipitation
- EMSA
electrophoretic mobility shift assay
- PAECs
pulmon. artery endothelial cells
- PMVECs
pulmon. micro-vascular endothelial cells
- pN3Sp1
plasmid DNA expressing Sp1
- Sp1
specificity protein 1
- TBP
TATA-box binding protein
- TFIIB
transcription factor IIB
- TRANSFAC
TRANScription FACtor database
References
- 1.Bowen M.A., Patel D.D., Li X., Modrell B., Malacko A.R., Wang W.C., Marquardt H., Neubauer M., Pesando J.M., Francke U. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J. Exp. Med. 1995;181:2213–2220. doi: 10.1084/jem.181.6.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Bowen M.A., Bajorath J., D’Egidio M., Whitney G.S., Palmer D., Kobarg J., Starling G.C., Siadak A.W., Aruffo A. Characterization of mouse ALCAM (CD166): the CD6-binding domain is conserved in different homologs and mediates cross-species binding. Eur. J. Immunol. 1997;27:1469–1478. doi: 10.1002/eji.1830270625. [DOI] [PubMed] [Google Scholar]
- 3.Hassan N.J., Barclay A.N., Brown M.H. Frontline: Optimal T cell activation requires the engagement of CD6 and CD166. Eur. J. Immunol. 2004;34:930–940. doi: 10.1002/eji.200424856. [DOI] [PubMed] [Google Scholar]
- 4.Corbel C., Cormier F., Pourquie O., Bluestein H.G. BEN, a novel surface molecule of the immunoglobulin superfamily on avian hemopoietic progenitor cells shared with neural cells. Exp. Cell. Res. 1992;203:91–99. doi: 10.1016/0014-4827(92)90043-8. [DOI] [PubMed] [Google Scholar]
- 5.Stephan J.P., Bald L., Roberts P.E., Lee J., Gu Q., Mather J.P. Distribution and function of the adhesion molecule BEN during rat development. Dev. Biol. 1999;212:264–277. doi: 10.1006/dbio.1999.9348. [DOI] [PubMed] [Google Scholar]
- 6.Laessing U., Giordano S., Stecher B., Lottspeich F., Stuermer C.A. Molecular characterization of fish neurolin: a growth-associated cell surface protein and member of the immunoglobulin superfamily in the fish retinotectal system with similarities to chick protein DM-GRASP/SC-1/BEN. Differentiation. 1994;56:21–29. doi: 10.1046/j.1432-0436.1994.56120021.x. [DOI] [PubMed] [Google Scholar]
- 7.Burns F.R., von Kannen S., Guy L., Raper J.A., Kamholz J., Chang S. DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron. 1991;7:209–220. doi: 10.1016/0896-6273(91)90259-3. [DOI] [PubMed] [Google Scholar]
- 8.Cortes F., Deschaseaux F., Uchida N., Labastie M.C., Friera A.M., He D., Charbord P., Peault B. HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues. Blood. 1999;93:826–837. [PubMed] [Google Scholar]
- 9.Uchida N., Yang Z., Combs J., Pourquie O., Nguyen M., Ramanathan R., Fu J., Welply A., Chen S., Weddell G. The characterization, molecular cloning, and expression of a novel hematopoietic cell antigen from CD34+ human bone marrow cells. Blood. 1997;89:2706–2716. [PubMed] [Google Scholar]
- 10.Degen W.G., van Kempen L.C., Gijzen E.G., van Groningen J.J., van Kooyk Y., Bloemers H.P., Swart G.W. MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule) Am. J. Pathol. 1998;152:805–813. [PMC free article] [PubMed] [Google Scholar]
- 11.Matsumoto A., Mitchell A., Kurata H., Pyle L., Kondo K., Itakura H., Fidge N. Cloning and characterization of HB2, a candidate high density lipoprotein receptor. Sequence homology with members of the immunoglobulin superfamily of membrane proteins. J. Biol. Chem. 1997;272:16778–16782. doi: 10.1074/jbc.272.27.16778. [DOI] [PubMed] [Google Scholar]
- 12.Tanaka H., Matsui T., Agata A., Tomura M., Kubota I., McFarland K.C., Kohr B., Lee A., Phillips H.S., Shelton D.L. Molecular cloning and expression of a novel adhesion molecule, SC1. Neuron. 1991;7:535–545. doi: 10.1016/0896-6273(91)90366-8. [DOI] [PubMed] [Google Scholar]
- 13.Swart G.W. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur. J. Cell. Biol. 2002;81:313–321. doi: 10.1078/0171-9335-00256. [DOI] [PubMed] [Google Scholar]
- 14.Fujiwara H., Tatsumi K., Kosaka K., Sato Y., Higuchi T., Yoshioka S., Maeda M., Ueda M., Fujii S. Human blastocysts and endometrial epithelial cells express activated leukocyte cell adhesion molecule (ALCAM/CD166) J. Clin. Endocrinol. Metab. 2003;88:3437–3443. doi: 10.1210/jc.2002-021888. [DOI] [PubMed] [Google Scholar]
- 15.Masedunskas A., King J.A., Tan F., Cochran R., Stevens T., Sviridov D., Ofori-Acquah S.F. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580:2637–2645. doi: 10.1016/j.febslet.2006.04.013. [DOI] [PubMed] [Google Scholar]
- 16.Ibanez A., Sarrias M.R., Farnos M., Gimferrer I., Serra-Pages C., Vives J., Lozano F. Mitogen-Activated Protein Kinase Pathway Activation by the CD6 Lymphocyte Surface Receptor. J. Immunol. 2006;177:1152–1159. doi: 10.4049/jimmunol.177.2.1152. [DOI] [PubMed] [Google Scholar]
- 17.Gimferrer I., Calvo M., Mittelbrunn M., Farnos M., Sarrias M.R., Enrich C., Vives J., Sanchez-Madrid F., Lozano F. Relevance of CD6-mediated interactions in T cell activation and proliferation. J. Immunol. 2004;173:2262–2270. doi: 10.4049/jimmunol.173.4.2262. [DOI] [PubMed] [Google Scholar]
- 18.Zimmerman A.W., Joosten B., Torensma R., Parnes J.R., van Leeuwen F.N., Figdor C.G. Long-term engagement of CD6 and ALCAM is essential for T cell proliferation induced by dendritic cells. Blood. 2006;107:3212–3220. doi: 10.1182/blood-2005-09-3881. [DOI] [PubMed] [Google Scholar]
- 19.van Kempen L.C., van den Oord J.J., van Muijen G.N., Weidle U.H., Bloemers H.P., Swart G.W. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Pathol. 2000;156:769–774. doi: 10.1016/S0002-9440(10)64943-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Zheng X., Ding W., Xie L., Chen Z. Expression and significance of activated leukocyte cell adhesion molecule in prostatic intraepithelial neoplasia and adenocarcinoma. Zhonghua. Nan. Ke. Xue. 2004;10:265–268. [PubMed] [Google Scholar]
- 21.Kristiansen G., Pilarsky C., Wissmann C., Stephan C., Weissbach L., Loy V., Loening S., Dietel M., Rosenthal A. ALCAM/CD166 is upregulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate. 2003;54:34–43. doi: 10.1002/pros.10161. [DOI] [PubMed] [Google Scholar]
- 22.Verma A., Shukla N.K., Deo S.V., Gupta S.D., Ralhan R. MEMD/ALCAM: a potential marker for tumor invasion and nodal metastasis in esophageal squamous cell carcinoma. Oncology. 2005;68:462–470. doi: 10.1159/000086989. [DOI] [PubMed] [Google Scholar]
- 23.Weichert W., Knosel T., Bellach J., Dietel M., Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J. Clin. Pathol. 2004;57:1160–1164. doi: 10.1136/jcp.2004.016238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kahlert C., Weber H., Mogler C., Bergmann F., Schirmacher P., Kenngott H.G., Matterne U., Mollberg N., Rahbari N.N., Hinz U. Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br. J. Cancer. 2009;101:457–464. doi: 10.1038/sj.bjc.6605136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.King J.A., Ofori-Acquah S.F., Stevens T., Al-Mehdi A.B., Fodstad O., Jiang W.G. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast. Cancer Res. 2004;6:478–487. doi: 10.1186/bcr815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Jezierska A., Olszewski W.P., Pietruszkiewicz J., Olszewski W., Matysiak W., Motyl T. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med. Sci. Monit. 2006;12:245–256. [PubMed] [Google Scholar]
- 27.Burkhardt M., Mayordomo E., Winzer K.J., Fritzsche F., Gansukh T., Pahl S., Weichert W., Denkert C., Guski H., Dietel M. Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J. Clin. Pathol. 2006;59:403–409. doi: 10.1136/jcp.2005.028209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Ihnen M., Muller V., Wirtz R.M., Schroder C., Krenkel S., Witzel I., Lisboa B.W., Janicke F., Milde-Langosch K. Predictive impact of activated leukocyte cell adhesion molecule (ALCAM/CD166) in breast cancer. Breast. Cancer Res. Treat. 2008;112:419–427. doi: 10.1007/s10549-007-9879-y. [DOI] [PubMed] [Google Scholar]
- 29.Davies S.R., Dent C., Watkins G., King J.A., Mokbel K., Jiang W.G. Expression of the cell to cell adhesion molecule, ALCAM, in breast cancer patients and the potential link with skeletal metastasis. Oncol. Rep. 2008;19:555–561. [PubMed] [Google Scholar]
- 30.Kilic E., Milde-Langosch K., Muller V., Wirtz R., Ihnen M. Expression of activated leukocyte cell adhesion molecule in breast cancer. Predictability of the response to taxane-free chemotherapy. Der. Pathologe. 2008;29:347–352. doi: 10.1007/s00292-008-1080-5. [DOI] [PubMed] [Google Scholar]
- 31.Ihnen M., Wirtz R.M., Kalogeras K.T., Milde-Langosch K., Schmidt M., Witzel I., Eleftheraki A.G., Papadimitriou C., Janicke F., Briassoulis E. Combination of osteopontin and activated leukocyte cell adhesion molecule as potent prognostic discriminators in HER2- and ER-negative breast cancer. Br. J. Cancer. 2010;103:1048–1056. doi: 10.1038/sj.bjc.6605840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
- 33.Ofori-Acquah S.F., King J.A. Activated leukocyte cell adhesion molecule: a new paradox in cancer. Transl. Res. 2008;151:122–128. doi: 10.1016/j.trsl.2007.09.006. [DOI] [PubMed] [Google Scholar]
- 34.Orkin S.H. GATA-binding transcription factors in hematopoietic cells. Blood. 1992;80:575–581. [PubMed] [Google Scholar]
- 35.King J.A., Tan F., Mbeunkui F., Chambers Z., Cantrell S., Chen H., Alvarez D., Shevde L.A., Ofori-Acquah S.F. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer. Mol. Cancer. 2010;9:266. doi: 10.1186/1476-4598-9-266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Tan F., Ghosh S., Mbeunkui F., Thomas R., Weiner J.A., Ofori-Acquah S.F. Essential role for ALCAM gene silencing in megakaryocytic differentiation of K562 cells. BMC Mol. Biol. 2010;11:91. doi: 10.1186/1471-2199-11-91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Li Q., Clegg C., Peterson K., Shaw S., Raich N., Stamatoyannopoulos G. Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human epsilon gene expression. Proc. Natl. Acad. Sci. U. S. A. 1997;94:2444–2448. doi: 10.1073/pnas.94.6.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Hong W., Nakazawa M., Chen Y.Y., Kori R., Vakoc C.R., Rakowski C., Blobel G.A. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 2005;24:2367–2378. doi: 10.1038/sj.emboj.7600703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Al-Mehdi A.B., Tozawa K., Fisher A.B., Shientag L., Lee A., Muschel R.J. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 2006;6:100–102. doi: 10.1038/71429. [DOI] [PubMed] [Google Scholar]
- 40.Wong C.W., Song C., Grimes M.M., Fu W., Dewhirst M.W., Muschel R.J., Al-Mehdi A.B. Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am. J. Pathol. 2002;161:749–753. doi: 10.1016/S0002-9440(10)64233-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Block K.L., Shou Y., Poncz M. An Ets/Sp1 interaction in the 5′-flanking region of the megakaryocyte-specific alpha IIb gene appears to stabilize Sp1 binding and is essential for expression of this TATA-less gene. Blood. 1996;88:2071–2080. [PubMed] [Google Scholar]
- 42.Liu M.Y., Eyries M., Zhang C., Santiago F.S., Khachigian L.M. Inducible platelet-derived growth factor D-chain expression by angiotensin II and hydrogen peroxide involves transcriptional regulation by Ets-1 and Sp1. Blood. 2006;107:2322–2329. doi: 10.1182/blood-2005-06-2377. [DOI] [PubMed] [Google Scholar]
- 43.Sugimoto H., Okamura K., Sugimoto S., Satou M., Hattori T., Vance D.E., Izumi T. Sp1 is a co-activator with Ets-1, and Net is an important repressor of the transcription of CTP:phosphocholine cytidylyltransferase alpha. J. Biol. Chem. 2005;280:40857–40866. doi: 10.1074/jbc.M503578200. [DOI] [PubMed] [Google Scholar]
- 44.Le Mee S., Fromigue O., Marie P.J. Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts. Exp. Cell Res. 2005;302:129–142. doi: 10.1016/j.yexcr.2004.08.028. [DOI] [PubMed] [Google Scholar]
- 45.Liu M., Whetstine J.R., Payton S.G., Ge Y., Flatley R.M., Matherly L.H. Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochem. J. 2004;383:249–257. doi: 10.1042/BJ20040984. [DOI] [PMC free article] [PubMed] [Google Scholar]