Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):i33. doi: 10.1107/S1600536813011847

(Thio­cyanato-κS)­tris­(thio­urea-κS)mercury(II) chloride

A Shihabuddeen Syed a, K Rajarajan b,*, M NizamMohideen c,*
PMCID: PMC3684862  PMID: 23794964

Abstract

In the title salt, [Hg(NCS)(CH4N2S)3]Cl, the Hg2+ ion is coordinated in a severely distorted tetra­hedral manner by three thio­urea groups and one thio­cyanate anion through their S atoms. The S—Hg—S angles vary widely from 87.39 (5) to 128.02 (4)°. Weak intra­molecular N—H⋯S hydrogen bonds are observed, which form S(6) ring motifs. In the crystal, the ions are linked by N—H⋯N and weak N—H⋯Cl inter­actions, generating a three-dimensional network.

Related literature  

For background to mercury(II) complexes with thio­urea and thio­cyanate ligands, see: Nawaz et al. (2010). For hard and soft acids and bases, see: Ozutsmi et al. (1989); Bell et al. (2001). For related structures, see: Safari et al. (2009); Nawaz et al. (2010); Ramesh et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental  

Crystal data  

  • [Hg(NCS)(CH4N2S)3]Cl

  • M r = 522.49

  • Orthorhombic, Inline graphic

  • a = 8.2175 (3) Å

  • b = 16.3257 (8) Å

  • c = 22.6793 (10) Å

  • V = 3042.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.83 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.140, T max = 0.221

  • 38987 measured reflections

  • 5125 independent reflections

  • 3579 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.082

  • S = 1.05

  • 5125 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 2.17 e Å−3

  • Δρmin = −1.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011847/jj2165sup1.cif

e-69-00i33-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011847/jj2165Isup2.hkl

e-69-00i33-Isup2.hkl (246KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.48 3.277 (4) 155
N1—H1B⋯S2 0.86 2.76 3.475 (5) 142
N2—H2A⋯Cl1i 0.86 2.55 3.335 (4) 152
N3—H3B⋯Cl1 0.86 2.61 3.320 (5) 141
N4—H4B⋯Cl1ii 0.86 2.51 3.370 (5) 175
N5—H5B⋯Cl1 0.86 2.54 3.363 (4) 161
N5—H5A⋯N7iii 0.86 2.11 2.933 (7) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].

supplementary crystallographic information

Comment

This work is part of a research project concerning the investigation of thiourea (N2H4CS) and thiocyanate (SCN) based metal organic crystalline materials and their derivatives (Ramesh et al., 2012). Transition metal thiourea and thiocyanate coordination complexes are candidate materials for device applications including their nonlinear optical properties. As ligands, both thiourea and thiocyanate are interesting due to their potential formation of metalcoordination complexes as they exhibit multifunctional coordination modes due to the presence of 'S' and 'N' donor atoms. With reference to the hard and soft acids and bases) concept (Ozutsmi et al., 1989; Bell et al., 2001), thesoft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands. Several crystallographic reports about mercury(II) complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Nawaz et al., 2010). Here, we report the synthesis and structure of the title salt, [(SC(2NH2))3(SCN-)Hg(2+]+ . Cl-,(I).

In (I), the Hg2+ ion is coordinated to three softer S atoms of thiourea and one softer S atom of a thiocyanate anion in addition to the isolated chlorine ion (Fig. 1). Intramolecular N—H···S hydrogen bonds are observed which form S(6) ring motifs (Bernstein et al., 1995). Bond distances and angles are in agreement with those reported for related compounds (Safari et al., 2009; Nawaz et al., 2010). The S—Hg—S angles vary widely from 87.39 (5)° to 128.02 (4)°, indicative of a distorted tetrahedral arrangement. The SCN- moiety is planar [to within 0.007 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The S2—C4—N7 unit is nearly linear with a bond angle of 177.9 (6)°. In the crystal, the ions are stabilized by weak N—H···Cl, and N—H···N intermolecular interactions (Table.1) which form a three-dimensional network (Fig. 2).

Experimental

A mixture of thiourea, ammonium thiocyanate and mercury (II) choloride were dissolved in aqueous solution in the molar ratio 3:1:1 and thoroughly mixed for an hour to obtain a homogenous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal XRD were obtained in 12 days.

Refinement

All H atoms were positioned geometrically with N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed along the a axis. Intramolecular N—H···S hydrogen bonds and weak N—H···Cl, and N—H···N intermolecular interactions are shown as dashed lines.

Crystal data

[Hg(NCS)(CH4N2S)3]Cl F(000) = 1968
Mr = 522.49 Dx = 2.281 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5125 reflections
a = 8.2175 (3) Å θ = 2.4–31.2°
b = 16.3257 (8) Å µ = 10.83 mm1
c = 22.6793 (10) Å T = 293 K
V = 3042.6 (2) Å3 Block, colorless
Z = 8 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 5125 independent reflections
Radiation source: fine-focus sealed tube 3579 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
ω and φ scans θmax = 31.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −12→6
Tmin = 0.140, Tmax = 0.221 k = −23→24
38987 measured reflections l = −32→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2 + 7.0058P] where P = (Fo2 + 2Fc2)/3
5125 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 2.17 e Å3
0 restraints Δρmin = −1.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.2410 (5) 0.1993 (3) 0.42350 (17) 0.0280 (8)
C2 1.0389 (5) 0.3016 (3) 0.2771 (2) 0.0321 (9)
C3 0.7067 (6) 0.0234 (3) 0.43089 (19) 0.0333 (9)
C4 1.2429 (7) −0.0184 (3) 0.3691 (2) 0.0498 (13)
N1 1.3113 (5) 0.1934 (3) 0.37245 (16) 0.0488 (12)
H1A 1.4063 0.2142 0.3671 0.059*
H1B 1.2628 0.1687 0.3439 0.059*
N2 1.3169 (5) 0.2370 (3) 0.46633 (17) 0.0445 (10)
H2A 1.4119 0.2575 0.4604 0.053*
H2B 1.2718 0.2414 0.5004 0.053*
N3 1.0072 (6) 0.3302 (3) 0.32922 (19) 0.0511 (11)
H3A 1.0352 0.3794 0.3383 0.061*
H3B 0.9582 0.2999 0.3547 0.061*
N4 1.1131 (6) 0.3476 (3) 0.2386 (2) 0.0541 (12)
H4A 1.1409 0.3967 0.2477 0.065*
H4B 1.1342 0.3287 0.2040 0.065*
N5 0.6681 (6) 0.0872 (3) 0.46201 (18) 0.0496 (11)
H5A 0.6676 0.0844 0.4999 0.060*
H5B 0.6430 0.1324 0.4448 0.060*
N6 0.7440 (8) −0.0438 (3) 0.4576 (2) 0.0667 (15)
H6A 0.7430 −0.0458 0.4955 0.080*
H6B 0.7698 −0.0865 0.4375 0.080*
N7 1.2853 (8) −0.0407 (4) 0.4142 (2) 0.0779 (18)
Hg1 0.92567 (2) 0.123362 (12) 0.340864 (7) 0.03933 (7)
S1 1.05319 (12) 0.15817 (7) 0.43857 (4) 0.0313 (2)
S2 1.18864 (19) 0.01386 (9) 0.30317 (6) 0.0529 (4)
S3 0.70350 (17) 0.02592 (8) 0.35487 (5) 0.0430 (3)
S4 0.98486 (18) 0.20568 (7) 0.25448 (5) 0.0411 (3)
Cl1 0.66976 (13) 0.27345 (7) 0.39858 (4) 0.0323 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.025 (2) 0.034 (2) 0.0245 (18) 0.0005 (16) −0.0007 (15) 0.0005 (16)
C2 0.029 (2) 0.028 (2) 0.040 (2) −0.0008 (16) 0.0019 (17) −0.0016 (17)
C3 0.039 (3) 0.029 (2) 0.031 (2) −0.0060 (18) 0.0015 (18) 0.0054 (17)
C4 0.060 (3) 0.044 (3) 0.046 (3) 0.022 (3) 0.006 (2) −0.005 (2)
N1 0.032 (2) 0.090 (3) 0.0248 (18) −0.021 (2) 0.0068 (15) −0.010 (2)
N2 0.036 (2) 0.066 (3) 0.0310 (19) −0.019 (2) 0.0034 (16) −0.0137 (19)
N3 0.061 (3) 0.037 (2) 0.055 (3) −0.013 (2) 0.019 (2) −0.0159 (19)
N4 0.076 (3) 0.030 (2) 0.057 (3) −0.015 (2) 0.024 (2) −0.0046 (19)
N5 0.078 (3) 0.034 (2) 0.037 (2) 0.007 (2) 0.002 (2) 0.0028 (18)
N6 0.123 (5) 0.037 (3) 0.040 (2) 0.026 (3) 0.002 (3) 0.008 (2)
N7 0.110 (5) 0.079 (4) 0.044 (3) 0.043 (4) 0.005 (3) 0.008 (3)
Hg1 0.04559 (12) 0.04260 (11) 0.02981 (9) −0.01684 (8) −0.00241 (7) 0.00517 (7)
S1 0.0253 (5) 0.0458 (6) 0.0226 (4) −0.0040 (4) 0.0020 (4) −0.0053 (4)
S2 0.0672 (10) 0.0556 (8) 0.0358 (6) 0.0222 (7) −0.0004 (6) −0.0097 (6)
S3 0.0545 (8) 0.0436 (7) 0.0310 (5) −0.0259 (6) −0.0047 (5) 0.0018 (5)
S4 0.0683 (8) 0.0323 (6) 0.0227 (5) −0.0161 (6) −0.0053 (5) 0.0020 (4)
Cl1 0.0305 (5) 0.0362 (5) 0.0301 (5) −0.0054 (4) −0.0013 (4) 0.0004 (4)

Geometric parameters (Å, º)

C1—N1 1.297 (5) N2—H2B 0.8600
C1—N2 1.309 (5) N3—H3A 0.8600
C1—S1 1.717 (4) N3—H3B 0.8600
C2—N3 1.297 (6) N4—H4A 0.8600
C2—N4 1.302 (6) N4—H4B 0.8600
C2—S4 1.707 (4) N5—H5A 0.8600
C3—N6 1.290 (6) N5—H5B 0.8600
C3—N5 1.298 (6) N6—H6A 0.8600
C3—S3 1.725 (4) N6—H6B 0.8600
C4—N7 1.141 (7) Hg1—S4 2.4250 (11)
C4—S2 1.647 (6) Hg1—S3 2.4422 (12)
C4—S2 1.647 (6) Hg1—S1 2.5162 (10)
N1—H1A 0.8600 Hg1—S2 2.9320 (14)
N1—H1B 0.8600 Hg1—S2 2.9320 (14)
N2—H2A 0.8600
N1—C1—N2 119.0 (4) C2—N4—H4B 120.0
N1—C1—S1 123.3 (3) H4A—N4—H4B 120.0
N2—C1—S1 117.7 (3) C3—N5—H5A 120.0
N3—C2—N4 119.9 (4) C3—N5—H5B 120.0
N3—C2—S4 123.4 (4) H5A—N5—H5B 120.0
N4—C2—S4 116.7 (4) C3—N6—H6A 120.0
N6—C3—N5 119.1 (4) C3—N6—H6B 120.0
N6—C3—S3 119.6 (4) H6A—N6—H6B 120.0
N5—C3—S3 121.4 (4) S4—Hg1—S3 128.02 (4)
N7—C4—S2 177.9 (6) S4—Hg1—S1 120.18 (4)
N7—C4—S2 177.9 (6) S3—Hg1—S1 110.11 (4)
C1—N1—H1A 120.0 S4—Hg1—S2 87.39 (5)
C1—N1—H1B 120.0 S3—Hg1—S2 101.05 (5)
H1A—N1—H1B 120.0 S1—Hg1—S2 95.02 (4)
C1—N2—H2A 120.0 S4—Hg1—S2 87.39 (5)
C1—N2—H2B 120.0 S3—Hg1—S2 101.05 (5)
H2A—N2—H2B 120.0 S1—Hg1—S2 95.02 (4)
C2—N3—H3A 120.0 C1—S1—Hg1 106.69 (14)
C2—N3—H3B 120.0 C4—S2—Hg1 97.45 (18)
H3A—N3—H3B 120.0 C3—S3—Hg1 97.71 (15)
C2—N4—H4A 120.0 C2—S4—Hg1 108.55 (16)
N1—C1—S1—Hg1 −14.6 (4) S2—Hg1—S2—C4 0 (9)
N2—C1—S1—Hg1 166.6 (3) N6—C3—S3—Hg1 −115.5 (4)
S4—Hg1—S1—C1 −32.03 (16) N5—C3—S3—Hg1 66.4 (4)
S3—Hg1—S1—C1 161.59 (16) S4—Hg1—S3—C3 −160.34 (16)
S2—Hg1—S1—C1 57.87 (16) S1—Hg1—S3—C3 4.69 (17)
S2—Hg1—S1—C1 57.87 (16) S2—Hg1—S3—C3 104.27 (17)
S2—C4—S2—Hg1 0 (100) S2—Hg1—S3—C3 104.27 (17)
S4—Hg1—S2—S2 0.00 (8) N3—C2—S4—Hg1 −17.9 (5)
S3—Hg1—S2—S2 0.00 (8) N4—C2—S4—Hg1 163.4 (4)
S1—Hg1—S2—S2 0.00 (8) S3—Hg1—S4—C2 138.25 (16)
S4—Hg1—S2—C4 150.5 (2) S1—Hg1—S4—C2 −25.45 (17)
S3—Hg1—S2—C4 −81.2 (2) S2—Hg1—S4—C2 −119.74 (17)
S1—Hg1—S2—C4 30.5 (2) S2—Hg1—S4—C2 −119.74 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1i 0.86 2.48 3.277 (4) 155
N1—H1B···S2 0.86 2.76 3.475 (5) 142
N2—H2A···Cl1i 0.86 2.55 3.335 (4) 152
N3—H3B···Cl1 0.86 2.61 3.320 (5) 141
N4—H4B···Cl1ii 0.86 2.51 3.370 (5) 175
N5—H5B···Cl1 0.86 2.54 3.363 (4) 161
N5—H5A···N7iii 0.86 2.11 2.933 (7) 160

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, −z+1/2; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2165).

References

  1. Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952. [DOI] [PMC free article] [PubMed]
  7. Ozutsmi, K., Takamuku, T., Ishiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879.
  8. Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336. [DOI] [PMC free article] [PubMed]
  9. Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011847/jj2165sup1.cif

e-69-00i33-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011847/jj2165Isup2.hkl

e-69-00i33-Isup2.hkl (246KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES