Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):m302. doi: 10.1107/S1600536813011884

2-Amino-5-bromo­pyridin-1-ium (2-amino-5-bromo­pyridine-κN 1)trichloridozincate

Fitriani a, Kanidtha Hansongnern a,*, Nararak Leesakul a, Chaveng Pakawatchai a, Saowanit Saithong a
PMCID: PMC3684871  PMID: 23794973

Abstract

The structure of the title salt, (C5H6BrN2)[ZnCl3(C5H5BrN2)], consists of discrete 2-amino-5-bromo­pyridin-1-ium cations and distorted tetra­hedral (2-amino-5-bromo­pyridine)­tri­chlorido­zincate anions. In the crystal, the complex anions and cations are linked via N—H⋯Cl hydrogen bonds into layers parallel to (101). Short Br⋯Cl contacts of 3.4239 (11) and 3.4503 (12) Å are observed, as well as π–π stacking inter­actions between the pyridine and pyridinium rings, with alternating centroid-to-centroid distances of 3.653 (2) and 3.845 (2) Å.

Related literature  

For background to the chemistry of substituted pyridines, see: Janiak et al. (1999); Hubrich et al. (2010); Wei et al. (2012). For the biological activities and electrochemical properties of pyridine derivatives, see: Jo et al. (2004); Xiao et al. (2012).graphic file with name e-69-0m302-scheme1.jpg

Experimental  

Crystal data  

  • (C5H6BrN2)[ZnCl3(C5H5BrN2)]

  • M r = 518.77

  • Monoclinic, Inline graphic

  • a = 9.4238 (4) Å

  • b = 13.6544 (6) Å

  • c = 13.5679 (6) Å

  • β = 104.349 (1)°

  • V = 1691.40 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.64 mm−1

  • T = 293 K

  • 0.26 × 0.16 × 0.08 mm

Data collection  

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.286, T max = 0.576

  • 18043 measured reflections

  • 2979 independent reflections

  • 2491 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.086

  • S = 1.02

  • 2979 reflections

  • 196 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011884/wm2739sup1.cif

e-69-0m302-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011884/wm2739Isup2.hkl

e-69-0m302-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.87 (2) 2.50 (3) 3.315 (4) 156 (4)
N2—H2B⋯Cl2i 0.87 (2) 2.43 (2) 3.288 (4) 169 (5)
N3—H3A⋯Cl1ii 0.87 (2) 2.75 (4) 3.309 (4) 124 (3)
N3—H3A⋯Cl1iii 0.87 (2) 2.74 (4) 3.297 (4) 123 (4)
N4—H4A⋯Cl3iii 0.88 (2) 2.49 (3) 3.328 (4) 159 (4)
N4—H4B⋯Cl2iv 0.87 (2) 2.46 (3) 3.295 (4) 160 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their gratitute to the Center for Innovation in Chemistry (PERCH–CIC) and the Graduate School, Prince of Songkla University, Thailand, for financial support. One of the authors (Fitriani) is grateful to the Directorate General of Higher Education (DGHE) of Indonesia and Brawijaya University, Indonesia, for financial assistance and a DGHE postgraduate scholarship.

supplementary crystallographic information

Comment

In recent years, pyridine and its derivatives were found to be suitable ligands for transition metal coordination compounds involving FeII, NiII (Janiak et al., 1999); CuII, CoII (Hubrich et al., 2010) and ZnII (Wei et al., 2012). Several pyridine derivatives play important roles in biological activities (Jo et al., 2004) or have interesting electrochemical properties (Xiao et al., 2012).

In the present work, 2-amino-5-bromopyridine was reacted with ZnCl2 in acidic solution, forming the pyridinium cation, [C5H6BrN2]+, accompanied by the complex anion, [ZnCl3(C5H5BrN2]- (Fig. 1). In the anion, the ZnII atom is in a distorted tetrahedral coordination geometry, bonded to the N atom of the pyridine ring of neutral 2-amino-5-bromopyridine and to three Cl atoms. The amino group is not involved in metal coordination. The Zn1—N1 bond length is 2.052 (3) Å, and the three Zn—Cl bond lengths are Zn1—Cl1 = 2.2494 (11) Å; Zn1—Cl2 = 2.2691 (11) Å; Zn1—Cl3 = 2.2499 (11) Å. The angles around the ZnII atom range from 104.99 (9) to 114.22 (4)°, indicating a slight deviation from the the ideal tetrahedral angles.

Both intra- and inter-molecular N—H···Cl hydrogen-bonding interactions are observed (Fig. 2). The only intramolecular hydrogen bond is in the complex anion, namely between the N2 atom of the amino group and the Cl1 atom [N2—H2A···Cl1, N2···Cl1 = 3.315 (4) Å]. The N2 donor is also connected to the Cl2i atom (i: -x + 3/2, y + 1/2, -z + 1/2) of an adjacent anionic complex as an inter-molecular interaction [N2—H2B···Cl2i, N2···Cl2i = 3.288 (4) Å]. Other inter-molecular hydrogen bonds are found between the N-amino group of the cation and Cl atoms of different anionic complexes [N4—H4A···Cl3iii, N4···Cl3iii = 3.328 (4) Å; iii: -x + 1, -y, -z + 1; N4—H4B···Cl2iv, N4···Cl2iv = 3.295 (4) Å; iv: x - 1/2, -y + 1/2, z + 1/2]. In addition, inter-molecular hydrogen bonding of the type N—H···Cl is also found among the protonated N atom of the cation and other two Cl atoms of two nearby anionic complexes [N3—H3A···Cl1ii, N3···Cl1ii = 3.309 (4) Å; ii: x - 1, y, z; N3—H3A···Cl1iii, N3···Cl1iii = 3.297 (4) Å]. All these inter-molecular hydrogen-bonding interactions generate a layer-like arrangement parallel to (101).

A short halogen···halogen contact of the type Br···Cl is found between the Br1 atom of the 2-amino-5-bromopyridine ligand of the complex anion and the Cl2 atom of an adjacent complex anion [Br1···Cl2 = 3.4239 (11) Å]. Furthermore, the Br2 atom of the neighbouring 2-amino-5-bromopyridinium cation also has a short contact to this Cl2 atom with a Br2···Cl2 distance of 3.4503 (12) Å as depicted in Fig. 3.

The crystal packing is futher stabilized by π–π stacking interactions between the pyridine ring (Cg1) of the anionic complex and the pyridinium ring (Cg2) with alternating centroid···centroid distances of Cg2···Cg1 = 3.653 (2) Å and Cg1···Cg2 = 3.845 (2) Å (Fig. 4). These interactions generate π–π stacking chains parallel to [101]. All in all, the stability of the crystal packing is governed by various interactions, including N—H···Cl hydrogen bonds, Br···Cl short contacts and π–π stacking, respectively.

Experimental

The title compound was synthesized by dissolving zinc chloride (480 mg, 3 mmol) in methanol (10 ml) which was added to a methanolic solution of 2-amino-5-bromopyridine (519 mg, 3 mmol). The reaction mixture was stirred in the presence of a few drops of concentrated hydrochloric acid. The final pH of the solution was adjusted to 3. After stirring for 5 h, the resulting solution was filtered off and the filtrate was left for slow evaporation of the solvent at ambient temperature. After several days, brown crystals suitable for X-ray diffraction analysis were collected by filtration, washed several times with methanol and dried in a desiccator over silica gel.

The analytical data of the zinc(II) complex are given as follows. [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]-. Yield 0.42 g, 27%. m.p. 461–463 K. Anal. Calcd. for [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]-: C 23.15, H 2.14, N 10.80%. Found: C 23.31, H 2.09, N 10.64%.

Refinement

All carbon H-atoms of were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The H atoms of all N atoms were located in a difference map and were restrained to N—H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular entities of cation and anion in the structure of [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]-, drawn with anisotropic displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

The inter- and intra-molecular hydrogen bonding interactions in [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]-, as viewed down the a axis.

Fig. 3.

Fig. 3.

The Br···Cl short contacts in [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]-, as viewed down the a axis [symmetry code: (vi) -x + 2, -y, -z].

Fig. 4.

Fig. 4.

The one-dimensional inter-molecular π–π stacking in [C5H6BrN2]+.[ZnCl3(C5H5BrN2)]- [symmetry codes: (iv) x - 1/2, -y + 1/2, z + 1/2; (v) x + 1/2, -y + 1/2, z + 1/2).

Crystal data

(C5H6BrN2)[ZnCl3(C5H5BrN2)] F(000) = 1000
Mr = 518.77 Dx = 2.037 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4332 reflections
a = 9.4238 (4) Å θ = 2.2–24.1°
b = 13.6544 (6) Å µ = 6.64 mm1
c = 13.5679 (6) Å T = 293 K
β = 104.349 (1)° Block, brown
V = 1691.40 (13) Å3 0.26 × 0.16 × 0.08 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 2979 independent reflections
Radiation source: fine-focus sealed tube 2491 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
0.3° ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −11→11
Tmin = 0.286, Tmax = 0.576 k = −16→16
18043 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0386P)2 + 2.1357P] where P = (Fo2 + 2Fc2)/3
2979 reflections (Δ/σ)max < 0.001
196 parameters Δρmax = 1.23 e Å3
5 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.84827 (5) 0.03227 (3) 0.27004 (3) 0.04549 (14)
N1 0.9443 (3) 0.1421 (2) 0.2061 (2) 0.0424 (7)
N2 0.8519 (5) 0.2686 (3) 0.2841 (3) 0.0656 (10)
H2A 0.816 (5) 0.226 (3) 0.320 (3) 0.079*
H2B 0.843 (5) 0.3311 (17) 0.295 (4) 0.079*
N3 0.1587 (4) 0.1505 (2) 0.4873 (3) 0.0519 (8)
H3A 0.104 (4) 0.112 (3) 0.513 (3) 0.062*
N4 0.0611 (5) 0.2750 (3) 0.5635 (3) 0.0642 (10)
H4A 0.019 (5) 0.234 (3) 0.597 (3) 0.077*
H4B 0.056 (5) 0.3368 (17) 0.579 (4) 0.077*
Cl1 0.81449 (12) 0.07487 (8) 0.42275 (8) 0.0559 (3)
Cl2 0.63220 (11) 0.00231 (7) 0.15590 (7) 0.0509 (2)
Cl3 1.00795 (13) −0.09311 (7) 0.29181 (8) 0.0589 (3)
C1 0.9311 (4) 0.2387 (3) 0.2208 (3) 0.0461 (9)
C2 1.0012 (5) 0.3065 (3) 0.1699 (3) 0.0588 (11)
H2 0.9933 0.3733 0.1810 0.071*
C3 1.0794 (5) 0.2747 (3) 0.1055 (3) 0.0614 (12)
H3 1.1252 0.3191 0.0716 0.074*
C4 1.0908 (4) 0.1746 (3) 0.0904 (3) 0.0521 (10)
C5 1.0238 (4) 0.1116 (3) 0.1420 (3) 0.0461 (9)
H5 1.0333 0.0446 0.1326 0.055*
C6 0.1411 (4) 0.2466 (3) 0.5014 (3) 0.0469 (9)
C7 0.2104 (5) 0.3113 (3) 0.4476 (3) 0.0538 (10)
H7 0.2005 0.3786 0.4547 0.065*
C8 0.2913 (4) 0.2767 (3) 0.3856 (3) 0.0552 (10)
H8 0.3366 0.3199 0.3501 0.066*
C9 0.3068 (4) 0.1754 (3) 0.3750 (3) 0.0528 (10)
C10 0.2379 (5) 0.1142 (3) 0.4251 (3) 0.0536 (10)
H10 0.2447 0.0469 0.4171 0.064*
Br1 1.19546 (6) 0.12257 (4) 0.00001 (4) 0.07623 (18)
Br2 0.42174 (6) 0.12277 (5) 0.29263 (4) 0.07970 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0510 (3) 0.0391 (2) 0.0496 (3) −0.00250 (19) 0.0187 (2) 0.00095 (19)
N1 0.0439 (17) 0.0370 (16) 0.0489 (18) −0.0010 (13) 0.0163 (14) 0.0004 (13)
N2 0.086 (3) 0.040 (2) 0.079 (3) 0.0100 (19) 0.036 (2) −0.0003 (19)
N3 0.056 (2) 0.0417 (19) 0.061 (2) −0.0096 (15) 0.0204 (17) −0.0032 (16)
N4 0.076 (3) 0.055 (2) 0.070 (2) −0.005 (2) 0.033 (2) −0.006 (2)
Cl1 0.0633 (6) 0.0595 (6) 0.0492 (6) 0.0011 (5) 0.0218 (5) −0.0012 (5)
Cl2 0.0517 (6) 0.0443 (5) 0.0568 (6) −0.0039 (4) 0.0137 (5) 0.0020 (4)
Cl3 0.0694 (7) 0.0455 (5) 0.0646 (6) 0.0112 (5) 0.0219 (5) 0.0063 (5)
C1 0.047 (2) 0.039 (2) 0.049 (2) −0.0024 (16) 0.0062 (18) 0.0020 (17)
C2 0.072 (3) 0.042 (2) 0.060 (3) −0.008 (2) 0.011 (2) 0.0033 (19)
C3 0.070 (3) 0.054 (3) 0.058 (3) −0.019 (2) 0.012 (2) 0.011 (2)
C4 0.048 (2) 0.065 (3) 0.044 (2) −0.0064 (19) 0.0119 (18) 0.0017 (19)
C5 0.047 (2) 0.043 (2) 0.049 (2) −0.0042 (17) 0.0143 (18) 0.0007 (17)
C6 0.043 (2) 0.045 (2) 0.050 (2) −0.0043 (17) 0.0064 (18) −0.0033 (17)
C7 0.058 (3) 0.040 (2) 0.062 (3) −0.0053 (18) 0.010 (2) 0.0050 (19)
C8 0.051 (2) 0.061 (3) 0.055 (2) −0.008 (2) 0.014 (2) 0.008 (2)
C9 0.039 (2) 0.068 (3) 0.052 (2) 0.0020 (19) 0.0130 (18) −0.001 (2)
C10 0.052 (2) 0.052 (2) 0.057 (2) 0.0014 (19) 0.015 (2) −0.005 (2)
Br1 0.0751 (3) 0.1016 (4) 0.0625 (3) −0.0195 (3) 0.0369 (3) −0.0081 (3)
Br2 0.0638 (3) 0.1060 (4) 0.0769 (4) 0.0159 (3) 0.0318 (3) 0.0004 (3)

Geometric parameters (Å, º)

Zn1—N1 2.052 (3) C2—C3 1.347 (6)
Zn1—Cl1 2.2494 (11) C2—H2 0.9300
Zn1—Cl3 2.2499 (11) C3—C4 1.390 (6)
Zn1—Cl2 2.2691 (11) C3—H3 0.9300
N1—C1 1.344 (5) C4—C5 1.359 (5)
N1—C5 1.347 (5) C4—Br1 1.892 (4)
N2—C1 1.334 (5) C5—H5 0.9300
N2—H2A 0.874 (19) C6—C7 1.406 (6)
N2—H2B 0.873 (19) C7—C8 1.354 (6)
N3—C6 1.342 (5) C7—H7 0.9300
N3—C10 1.351 (5) C8—C9 1.401 (6)
N3—H3A 0.868 (19) C8—H8 0.9300
N4—C6 1.320 (6) C9—C10 1.342 (6)
N4—H4A 0.881 (19) C9—Br2 1.882 (4)
N4—H4B 0.874 (19) C10—H10 0.9300
C1—C2 1.413 (6)
N1—Zn1—Cl1 112.23 (9) C2—C3—C4 119.2 (4)
N1—Zn1—Cl3 105.12 (9) C2—C3—H3 120.4
Cl1—Zn1—Cl3 108.58 (4) C4—C3—H3 120.4
N1—Zn1—Cl2 104.99 (9) C5—C4—C3 118.9 (4)
Cl1—Zn1—Cl2 111.55 (4) C5—C4—Br1 118.6 (3)
Cl3—Zn1—Cl2 114.22 (4) C3—C4—Br1 122.5 (3)
C1—N1—C5 119.1 (3) N1—C5—C4 122.7 (4)
C1—N1—Zn1 126.0 (3) N1—C5—H5 118.7
C5—N1—Zn1 114.9 (2) C4—C5—H5 118.7
C1—N2—H2A 121 (3) N4—C6—N3 119.3 (4)
C1—N2—H2B 120 (3) N4—C6—C7 123.9 (4)
H2A—N2—H2B 119 (5) N3—C6—C7 116.8 (4)
C6—N3—C10 123.7 (4) C8—C7—C6 120.6 (4)
C6—N3—H3A 116 (3) C8—C7—H7 119.7
C10—N3—H3A 120 (3) C6—C7—H7 119.7
C6—N4—H4A 123 (3) C7—C8—C9 119.8 (4)
C6—N4—H4B 121 (3) C7—C8—H8 120.1
H4A—N4—H4B 115 (5) C9—C8—H8 120.1
N2—C1—N1 118.9 (4) C10—C9—C8 119.2 (4)
N2—C1—C2 121.2 (4) C10—C9—Br2 119.0 (3)
N1—C1—C2 120.0 (4) C8—C9—Br2 121.9 (3)
C3—C2—C1 120.1 (4) C9—C10—N3 119.9 (4)
C3—C2—H2 119.9 C9—C10—H10 120.0
C1—C2—H2 119.9 N3—C10—H10 120.0
Cl1—Zn1—N1—C1 −29.5 (3) C1—N1—C5—C4 −0.6 (6)
Cl3—Zn1—N1—C1 −147.3 (3) Zn1—N1—C5—C4 177.7 (3)
Cl2—Zn1—N1—C1 91.9 (3) C3—C4—C5—N1 1.2 (6)
Cl1—Zn1—N1—C5 152.4 (2) Br1—C4—C5—N1 −178.5 (3)
Cl3—Zn1—N1—C5 34.5 (3) C10—N3—C6—N4 179.7 (4)
Cl2—Zn1—N1—C5 −86.3 (3) C10—N3—C6—C7 0.0 (6)
C5—N1—C1—N2 179.8 (4) N4—C6—C7—C8 179.7 (4)
Zn1—N1—C1—N2 1.7 (5) N3—C6—C7—C8 −0.5 (6)
C5—N1—C1—C2 −0.5 (5) C6—C7—C8—C9 −0.2 (6)
Zn1—N1—C1—C2 −178.6 (3) C7—C8—C9—C10 1.5 (6)
N2—C1—C2—C3 −179.3 (4) C7—C8—C9—Br2 −178.4 (3)
N1—C1—C2—C3 1.0 (6) C8—C9—C10—N3 −2.0 (6)
C1—C2—C3—C4 −0.4 (7) Br2—C9—C10—N3 177.8 (3)
C2—C3—C4—C5 −0.7 (6) C6—N3—C10—C9 1.3 (6)
C2—C3—C4—Br1 179.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1 0.87 (2) 2.50 (3) 3.315 (4) 156 (4)
N2—H2B···Cl2i 0.87 (2) 2.43 (2) 3.288 (4) 169 (5)
N3—H3A···Cl1ii 0.87 (2) 2.75 (4) 3.309 (4) 124 (3)
N3—H3A···Cl1iii 0.87 (2) 2.74 (4) 3.297 (4) 123 (4)
N4—H4A···Cl3iii 0.88 (2) 2.49 (3) 3.328 (4) 159 (4)
N4—H4B···Cl2iv 0.87 (2) 2.46 (3) 3.295 (4) 160 (4)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2739).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hubrich, M., Peukert, M., Seichter, W. & Weber, E. (2010). Polyhedron, 29, 1854–1862.
  4. Janiak, C., Deblon, S., Wu, H., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. pp. 1507–1521.
  5. Jo, Y. W., Im, W. B., Rhee, J. K., Shim, M. J., Kim, W. B. & Choi, E. C. (2004). Bioorg. Med. Chem. pp. 5909–5915. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wei, Z., Xie, X., Zhao, J., Huang, L. & Liu, X. (2012). Inorg. Chim. Acta, 387, 277–282.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Xiao, X. W., He, Y. J., Sun, L. W., Wang, G. N., Shen, L. J., Fang, J. H. & Yang, J. P. (2012). Transition Met. Chem. pp. 1–5.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011884/wm2739sup1.cif

e-69-0m302-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011884/wm2739Isup2.hkl

e-69-0m302-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES