Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):m305–m306. doi: 10.1107/S1600536813011756

Poly[bis­(piperazine-1,4-diium) [(μ4-cyclo-hexa­phosphato)dilithium] tetra­hydrate]

Iness Ameur a, Sonia Abid a,*, Salem S Al-Deyab b, Mohamed Rzaigui a
PMCID: PMC3684873  PMID: 23794975

Abstract

In the title compound, {(C4H12N2)2[Li2(P6O18)]·4H2O}n, the phosphate ring anion, located around an inversion center, adopts a chair conformation. Adjacent P6O18 rings are linked via corner-sharing by LiO4 tetra­hedra, generating anionic porous {[Li2(P6O18)]4−}n layers parallel to (101). The piperazine-1,4-diium cations occupy the pores and develop hydrogen bonds with the inorganic framework. An extensive network of N—H⋯O and O—H⋯O hydrogen-bonding inter­actions link the components into a three-dimensional network and additional stabilization is provided by weak C—H⋯O hydrogen bonds.

Related literature  

For applications of compounds with open-framework structures, see: Assani et al. (2012); Mahesh et al. (2002); Natarajan (2000). For related structures with cyclo­hexa­phosphate rings, see: Abid et al. (2011), Amri et al. (2009); Marouani et al. (2010); For related structures with piperazine rings, see: Essid et al. (2010), Xu et al. (2007). For the synthesis of the precursor, see: Schülke & Kayser (1985).graphic file with name e-69-0m305-scheme1.jpg

Experimental  

Crystal data  

  • (C4H12N2)2[Li2(P6O18)]·4H2O

  • M r = 736.08

  • Monoclinic, Inline graphic

  • a = 10.245 (3) Å

  • b = 12.966 (4) Å

  • c = 10.910 (4) Å

  • β = 111.00 (3)°

  • V = 1352.8 (7) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.30 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 7884 measured reflections

  • 6469 independent reflections

  • 3904 reflections with I > 2σ(I)

  • R int = 0.038

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.128

  • S = 1.00

  • 6469 reflections

  • 202 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011756/pk2476sup1.cif

e-69-0m305-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011756/pk2476Isup2.hkl

e-69-0m305-Isup2.hkl (310.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯O8 0.90 1.99 2.792 (3) 147
N1—H2B⋯O7i 0.90 1.88 2.763 (3) 166
N2—H3A⋯O11 0.90 1.83 2.707 (4) 165
N2—H3B⋯O4ii 0.90 1.91 2.802 (2) 168
O10—H110⋯O1iii 0.84 (4) 1.99 (4) 2.792 (4) 159 (5)
O11—H111⋯O5iii 0.84 (3) 2.49 (4) 3.001 (3) 120 (3)
O11—H111⋯O8iii 0.84 (3) 2.07 (3) 2.826 (3) 150 (4)
O10—H210⋯O5i 0.82 (4) 1.95 (4) 2.764 (3) 170 (4)
O11—H211⋯O10iii 0.86 (4) 1.87 (4) 2.720 (4) 170 (4)
C1—H1A⋯O6iv 0.97 2.51 3.273 (4) 135
C4—H1D⋯O10 0.97 2.56 3.227 (4) 126
C2—H2C⋯O2v 0.97 2.29 3.078 (3) 137
C3—H4B⋯O5iii 0.97 2.46 3.324 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Tunisian Ministry of HEScR and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

supplementary crystallographic information

Comment

The area of framework materials continues to be of interest not only because of the wide variety of structures but also due to their potential applications in the areas of catalysis, sorption and separation processes (Mahesh et al., 2002) Natarajan, 2000). Much attention has been devoted to the synthesis of open-framework phosphates which exhibit a rich structural diversity and have been widely studied as catalysts, ion-exchangers and as positive electrode in the lithium and sodium batteries (Assani et al., 2012). Within this family of compounds, the resulting anionic frameworks, generally constructed from PO4 tetrahedra that are vertex linked with MOn polyhedra (with n = 4, 5 and 6), generate pores and channels offering suitable environment to accommodate different other cations. The piperazine (C4N2H10), which is a common heterocyclic nitrogen compound, has been indicated as excellent template for preparing microporous materials (Xu et al., 2007). The crystal structure reported here gives another illustration of this type of material. The corresponding compound, (C4H12N2)2Li2P6O18.4H2O (I), is an organic-inorganic hybrid built of two main cyclic components, C4H12N2 and P6O18 (Fig. 1). The phosphoric rings are interconnected by the Li+ cations via LiO4 tetrahedra sharing corners to form a two-dimensional inorganic framework extending along the (101) plane as shown in Fig. 2. The diprotonated (C4H12N2)2+ cations are trapped within the 10-membered ring pore of the layer, whereas the water molecules are located in the interlayer region and are grafted onto the framework oxygen atoms through hydrogen bonds (Fig. 3). The asymmetric unit of this atomic arrangement is built of one half of the P6O18 ring lying on an inversion center (1/2, 1/2, 1/2), one Li+ cation, two water molecules and one piperazine-1,4-diium cation. The organic and inorganic rings adopt a chair conformation with different geometrical characteristics due to their different size and flexibility. However, the P6O18 ring has (P–O and O–O) distances and (O–P–O, P–O–P and P–P–P angles) comparable to those observed in other cyclohexaphosphates having the same internal inversion symmetry (Abid et al., 2011; Amri et al., 2009; Marouani et al., 2010). The LiO4 tetrahedra is slightly distorted with Li–O distances ranging from 1.877 (4) to 1.969 (4) Å. The smallest distance between two tetrahedral centers is 5.548 (2) Å. The organic ring has for carbon atoms (C1, C2, C3 and C4) almost coplanar (r.m.s. deviation from the mean plane = 0.014 Å) and N1 and N2 displaced from the plane by 0.672 (2) and -0.663 (2) Å, respectively. These characteristics do not differ from those particular values observed in other compounds of the piperazinium despite the different constraints of their solid states (Essid et al., 2010).

Experimental

Crystals of the title compound were prepared by adding dropwise and stirring an ethanolic solution (5 mL) of piperazine (10 mmol) then an aquous solution (10 mL) of KOH (10 mmol) to an aqueous solution (10 mL) of cyclohexaphosphoric acid (5 mmol). Colourless prismatic crystals were obtained after a slow evaporation over a few days at ambient temperature. The cyclohexaphosphoric acid H6P6O18,was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement

N and C-bound H atoms were positioned geometrically (N–H = 0.90 Å, C–H = 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N). The bond distances of O–H and distance between two H atoms from each water molecules was restrained to be 0.85 and 1.37 Å with the default deviation respectively and with Uiso(H) = 1.5 Ueq (O).

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Projection in the [101] direction, showing the pores and their occupancy by the organic groups.

Fig. 3.

Fig. 3.

Projection of the framework of (I) along the c direction.

Crystal data

(C4H12N2)2[Li2(P6O18)]·4H2O F(000) = 760
Mr = 736.08 Dx = 1.807 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 10.245 (3) Å θ = 9.1–10.9°
b = 12.966 (4) Å µ = 0.26 mm1
c = 10.910 (4) Å T = 293 K
β = 111.00 (3)° Parallelepiped, colourless
V = 1352.8 (7) Å3 0.50 × 0.40 × 0.30 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.038
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.0°
Graphite monochromator h = −17→15
non–profiled ω–scans k = −3→21
7884 measured reflections l = 0→18
6469 independent reflections 2 standard reflections every 120 min
3904 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3
6469 reflections (Δ/σ)max = 0.001
202 parameters Δρmax = 0.57 e Å3
6 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.67085 (5) 0.82511 (4) 0.10243 (4) 0.01597 (10)
P2 0.73450 (5) 0.99726 (4) 0.28486 (5) 0.01656 (10)
P3 0.60626 (5) 1.16305 (4) 0.09894 (5) 0.01660 (10)
O3 0.75517 (14) 0.92532 (11) 0.17300 (12) 0.0195 (3)
O6 0.61176 (15) 1.07330 (12) 0.20122 (14) 0.0232 (3)
O5 0.86457 (16) 1.05454 (13) 0.34765 (15) 0.0287 (3)
O2 0.6560 (2) 0.75209 (12) 0.19975 (15) 0.0325 (4)
O4 0.67240 (16) 0.93559 (11) 0.36583 (13) 0.0227 (3)
O1 0.73374 (16) 0.78864 (13) 0.00746 (14) 0.0267 (3)
O8 0.73427 (15) 1.16386 (13) 0.06704 (14) 0.0251 (3)
O7 0.56459 (15) 1.26004 (11) 0.14913 (14) 0.0232 (3)
O9 0.52184 (15) 0.87728 (12) 0.02453 (14) 0.0265 (3)
N1 0.7657 (2) 1.11939 (14) −0.17128 (17) 0.0267 (4)
H2A 0.7908 1.1407 −0.0875 0.032*
H2B 0.7086 1.1673 −0.2230 0.032*
C1 0.6902 (3) 1.01996 (18) −0.1870 (2) 0.0304 (5)
H1A 0.6079 1.0284 −0.1637 0.036*
H1B 0.7501 0.9687 −0.1291 0.036*
C4 0.8925 (2) 1.1093 (2) −0.2064 (2) 0.0354 (5)
H1C 0.9576 1.0617 −0.1464 0.042*
H1D 0.9381 1.1758 −0.1984 0.042*
C3 0.8530 (3) 1.0702 (2) −0.3449 (2) 0.0335 (5)
H4A 0.7966 1.1217 −0.4054 0.040*
H4B 0.9370 1.0592 −0.3647 0.040*
N2 0.7735 (2) 0.97230 (15) −0.36309 (18) 0.0290 (4)
H3A 0.8288 0.9229 −0.3127 0.035*
H3B 0.7476 0.9522 −0.4474 0.035*
Li1 0.6251 (4) 0.7890 (3) 0.3536 (3) 0.0246 (7)
C2 0.6474 (3) 0.98435 (18) −0.3276 (2) 0.0307 (5)
H2C 0.5984 0.9190 −0.3383 0.037*
H2D 0.5846 1.0344 −0.3853 0.037*
O10 1.0185 (2) 1.28956 (19) 0.0074 (2) 0.0502 (6)
O11 0.9729 (2) 0.8504 (2) −0.1959 (3) 0.0704 (9)
H110 1.094 (3) 1.281 (4) −0.006 (4) 0.106*
H210 0.967 (4) 1.330 (3) −0.047 (4) 0.106*
H111 1.058 (2) 0.863 (4) −0.179 (4) 0.106*
H211 0.969 (5) 0.802 (3) −0.144 (4) 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0187 (2) 0.0152 (2) 0.01382 (18) 0.00116 (17) 0.00556 (15) −0.00189 (16)
P2 0.0190 (2) 0.0153 (2) 0.01505 (19) −0.00225 (17) 0.00565 (15) −0.00241 (16)
P3 0.0162 (2) 0.0158 (2) 0.01738 (19) 0.00004 (17) 0.00551 (15) −0.00147 (16)
O3 0.0212 (6) 0.0209 (6) 0.0181 (6) −0.0030 (5) 0.0091 (5) −0.0058 (5)
O6 0.0217 (7) 0.0207 (7) 0.0302 (7) 0.0029 (5) 0.0128 (6) 0.0062 (6)
O5 0.0250 (7) 0.0285 (8) 0.0271 (7) −0.0091 (6) 0.0027 (6) −0.0082 (6)
O2 0.0594 (12) 0.0183 (7) 0.0234 (7) −0.0060 (7) 0.0191 (7) −0.0004 (6)
O4 0.0337 (8) 0.0192 (6) 0.0185 (6) −0.0016 (6) 0.0137 (6) 0.0005 (5)
O1 0.0254 (7) 0.0347 (8) 0.0224 (6) 0.0018 (6) 0.0114 (6) −0.0110 (6)
O8 0.0205 (6) 0.0345 (8) 0.0224 (6) −0.0001 (6) 0.0103 (5) 0.0014 (6)
O7 0.0242 (7) 0.0161 (6) 0.0275 (7) 0.0000 (5) 0.0071 (6) −0.0063 (5)
O9 0.0196 (7) 0.0258 (7) 0.0267 (7) 0.0058 (6) −0.0007 (5) −0.0122 (6)
N1 0.0352 (10) 0.0237 (9) 0.0192 (7) 0.0056 (7) 0.0076 (7) −0.0028 (6)
C1 0.0372 (12) 0.0262 (10) 0.0362 (11) 0.0027 (9) 0.0235 (10) 0.0068 (9)
C4 0.0259 (11) 0.0373 (13) 0.0395 (12) −0.0065 (10) 0.0075 (9) −0.0058 (10)
C3 0.0349 (12) 0.0400 (13) 0.0333 (11) 0.0017 (10) 0.0215 (10) 0.0040 (10)
N2 0.0398 (11) 0.0255 (9) 0.0213 (8) 0.0097 (8) 0.0104 (7) −0.0012 (7)
Li1 0.0339 (19) 0.0211 (17) 0.0196 (15) −0.0037 (15) 0.0106 (14) 0.0038 (13)
C2 0.0304 (11) 0.0208 (10) 0.0384 (12) −0.0015 (8) 0.0091 (9) −0.0031 (9)
O10 0.0547 (13) 0.0556 (13) 0.0526 (12) 0.0314 (11) 0.0343 (11) 0.0273 (10)
O11 0.0229 (9) 0.0848 (19) 0.1003 (19) 0.0123 (11) 0.0183 (11) 0.0638 (16)

Geometric parameters (Å, º)

P1—O2 1.4707 (16) N1—H2B 0.9000
P1—O1 1.4801 (15) C1—C2 1.509 (3)
P1—O3 1.5970 (15) C1—H1A 0.9700
P1—O9 1.6063 (16) C1—H1B 0.9700
P1—Li1 2.978 (4) C4—C3 1.505 (3)
P1—Li1i 2.978 (4) C4—H1C 0.9700
P2—O5 1.4636 (16) C4—H1D 0.9700
P2—O4 1.4925 (15) C3—N2 1.483 (3)
P2—O6 1.6011 (16) C3—H4A 0.9700
P2—O3 1.6091 (14) C3—H4B 0.9700
P2—Li1 3.117 (4) N2—C2 1.483 (3)
P3—O8 1.4725 (15) N2—H3A 0.9000
P3—O7 1.4937 (15) N2—H3B 0.9000
P3—O9ii 1.5945 (16) Li1—O1iv 1.931 (4)
P3—O6 1.5991 (15) Li1—O7v 1.969 (4)
P3—Li1iii 3.071 (4) Li1—P1iv 2.978 (4)
O2—Li1 1.877 (4) Li1—P3v 3.071 (4)
O4—Li1 1.954 (4) C2—H2C 0.9700
O1—Li1i 1.931 (4) C2—H2D 0.9700
O7—Li1iii 1.969 (4) O10—H110 0.846 (18)
O9—P3ii 1.5945 (16) O10—H210 0.822 (18)
N1—C1 1.482 (3) O11—H111 0.840 (18)
N1—C4 1.485 (3) O11—H211 0.851 (18)
N1—H2A 0.9000
O2—P1—O1 118.91 (10) N1—C4—H1C 109.6
O2—P1—O3 110.72 (9) C3—C4—H1C 109.6
O1—P1—O3 107.54 (9) N1—C4—H1D 109.6
O2—P1—O9 109.16 (11) C3—C4—H1D 109.6
O1—P1—O9 109.50 (9) H1C—C4—H1D 108.2
O3—P1—O9 99.19 (8) N2—C3—C4 111.03 (19)
O1—P1—Li1 147.71 (11) N2—C3—H4A 109.4
O3—P1—Li1 85.45 (9) C4—C3—H4A 109.4
O9—P1—Li1 96.89 (10) N2—C3—H4B 109.4
O2—P1—Li1i 108.38 (10) C4—C3—H4B 109.4
O1—P1—Li1i 33.78 (10) H4A—C3—H4B 108.0
O3—P1—Li1i 136.45 (9) C3—N2—C2 111.29 (17)
O9—P1—Li1i 85.28 (10) C3—N2—H3A 109.4
Li1—P1—Li1i 137.36 (7) C2—N2—H3A 109.4
O5—P2—O4 120.31 (9) C3—N2—H3B 109.4
O5—P2—O6 110.58 (10) C2—N2—H3B 109.4
O4—P2—O6 104.65 (8) H3A—N2—H3B 108.0
O5—P2—O3 107.69 (9) O2—Li1—O1iv 114.5 (2)
O4—P2—O3 109.77 (9) O2—Li1—O4 101.07 (17)
O6—P2—O3 102.40 (8) O1iv—Li1—O4 113.3 (2)
O5—P2—Li1 132.28 (10) O2—Li1—O7v 114.8 (2)
O4—P2—Li1 29.20 (9) O1iv—Li1—O7v 99.89 (17)
O6—P2—Li1 113.21 (9) O4—Li1—O7v 113.9 (2)
O3—P2—Li1 80.59 (9) O2—Li1—P1 23.82 (7)
O8—P3—O7 118.45 (10) O1iv—Li1—P1 130.56 (19)
O8—P3—O9ii 109.62 (9) O4—Li1—P1 78.06 (12)
O7—P3—O9ii 109.20 (8) O7v—Li1—P1 119.75 (16)
O8—P3—O6 111.01 (9) O2—Li1—P1iv 131.81 (19)
O7—P3—O6 107.46 (9) O1iv—Li1—P1iv 25.22 (7)
O9ii—P3—O6 99.40 (9) O4—Li1—P1iv 117.81 (16)
O8—P3—Li1iii 147.42 (10) O7v—Li1—P1iv 75.57 (12)
O7—P3—Li1iii 31.94 (9) P1—Li1—P1iv 153.12 (15)
O9ii—P3—Li1iii 82.27 (9) O2—Li1—P3v 113.75 (17)
O6—P3—Li1iii 96.05 (9) O1iv—Li1—P3v 79.37 (12)
P1—O3—P2 129.92 (9) O4—Li1—P3v 133.85 (18)
P3—O6—P2 132.05 (9) O7v—Li1—P3v 23.66 (7)
P1—O2—Li1 125.14 (15) P1—Li1—P3v 128.64 (13)
P2—O4—Li1 128.93 (14) P1iv—Li1—P3v 57.37 (7)
P1—O1—Li1i 121.01 (15) O2—Li1—P2 79.37 (12)
P3—O7—Li1iii 124.41 (14) O1iv—Li1—P2 121.05 (17)
P3ii—O9—P1 130.33 (10) O4—Li1—P2 21.87 (6)
C1—N1—C4 111.21 (18) O7v—Li1—P2 126.83 (17)
C1—N1—H2A 109.4 P1—Li1—P2 56.88 (6)
C4—N1—H2A 109.4 P1iv—Li1—P2 134.19 (13)
C1—N1—H2B 109.4 P3v—Li1—P2 150.11 (14)
C4—N1—H2B 109.4 N2—C2—C1 109.55 (19)
H2A—N1—H2B 108.0 N2—C2—H2C 109.8
N1—C1—C2 109.47 (17) C1—C2—H2C 109.8
N1—C1—H1A 109.8 N2—C2—H2D 109.8
C2—C1—H1A 109.8 C1—C2—H2D 109.8
N1—C1—H1B 109.8 H2C—C2—H2D 108.2
C2—C1—H1B 109.8 H110—O10—H210 111 (3)
H1A—C1—H1B 108.2 H111—O11—H211 107 (3)
N1—C4—C3 110.11 (19)
O2—P1—O3—P2 −48.29 (15) O3—P1—Li1—O1iv −91.0 (2)
O1—P1—O3—P2 −179.72 (12) O9—P1—Li1—O1iv 170.3 (2)
O9—P1—O3—P2 66.34 (13) Li1i—P1—Li1—O1iv 79.8 (4)
Li1—P1—O3—P2 −29.92 (13) O2—P1—Li1—O4 164.8 (3)
Li1i—P1—O3—P2 159.16 (13) O1—P1—Li1—O4 135.73 (16)
O5—P2—O3—P1 160.31 (12) O3—P1—Li1—O4 19.62 (12)
O4—P2—O3—P1 27.66 (14) O9—P1—Li1—O4 −79.12 (13)
O6—P2—O3—P1 −83.09 (13) Li1i—P1—Li1—O4 −169.63 (10)
Li1—P2—O3—P1 28.79 (13) O2—P1—Li1—O7v −84.4 (2)
O8—P3—O6—P2 8.74 (17) O1—P1—Li1—O7v −113.4 (2)
O7—P3—O6—P2 −122.24 (13) O3—P1—Li1—O7v 130.49 (19)
O9ii—P3—O6—P2 124.08 (14) O9—P1—Li1—O7v 31.8 (2)
Li1iii—P3—O6—P2 −152.78 (14) Li1i—P1—Li1—O7v −58.8 (3)
O5—P2—O6—P3 46.37 (16) O2—P1—Li1—P1iv 35.2 (3)
O4—P2—O6—P3 177.31 (12) O1—P1—Li1—P1iv 6.1 (4)
O3—P2—O6—P3 −68.15 (15) O3—P1—Li1—P1iv −110.0 (3)
Li1—P2—O6—P3 −153.10 (13) O9—P1—Li1—P1iv 151.3 (3)
O1—P1—O2—Li1 162.77 (19) Li1i—P1—Li1—P1iv 60.8 (5)
O3—P1—O2—Li1 37.5 (2) O2—P1—Li1—P3v −57.7 (2)
O9—P1—O2—Li1 −70.7 (2) O1—P1—Li1—P3v −86.8 (2)
Li1i—P1—O2—Li1 −162.0 (2) O3—P1—Li1—P3v 157.13 (17)
O5—P2—O4—Li1 −123.45 (19) O9—P1—Li1—P3v 58.39 (17)
O6—P2—O4—Li1 111.54 (19) Li1i—P1—Li1—P3v −32.1 (3)
O3—P2—O4—Li1 2.3 (2) O2—P1—Li1—P2 158.8 (2)
O2—P1—O1—Li1i 79.75 (19) O1—P1—Li1—P2 129.75 (16)
O3—P1—O1—Li1i −153.48 (16) O3—P1—Li1—P2 13.64 (6)
O9—P1—O1—Li1i −46.64 (19) O9—P1—Li1—P2 −85.09 (7)
Li1—P1—O1—Li1i 96.36 (17) Li1i—P1—Li1—P2 −175.60 (15)
O8—P3—O7—Li1iii 160.49 (16) O5—P2—Li1—O2 −110.53 (15)
O9ii—P3—O7—Li1iii 34.12 (19) O4—P2—Li1—O2 172.7 (3)
O6—P3—O7—Li1iii −72.80 (18) O6—P2—Li1—O2 94.41 (14)
O2—P1—O9—P3ii −83.58 (15) O3—P2—Li1—O2 −5.13 (12)
O1—P1—O9—P3ii 48.19 (17) O5—P2—Li1—O1iv 1.8 (3)
O3—P1—O9—P3ii 160.59 (13) O4—P2—Li1—O1iv −75.0 (2)
Li1—P1—O9—P3ii −112.92 (15) O6—P2—Li1—O1iv −153.24 (17)
Li1i—P1—O9—P3ii 24.26 (15) O3—P2—Li1—O1iv 107.2 (2)
C4—N1—C1—C2 −59.4 (2) O5—P2—Li1—O4 76.8 (2)
C1—N1—C4—C3 57.2 (3) O6—P2—Li1—O4 −78.3 (2)
N1—C4—C3—N2 −55.0 (3) O3—P2—Li1—O4 −177.8 (2)
C4—C3—N2—C2 56.3 (3) O5—P2—Li1—O7v 136.35 (18)
P1—O2—Li1—O1iv −137.38 (19) O4—P2—Li1—O7v 59.6 (2)
P1—O2—Li1—O4 −15.2 (3) O6—P2—Li1—O7v −18.7 (2)
P1—O2—Li1—O7v 107.9 (2) O3—P2—Li1—O7v −118.2 (2)
P1—O2—Li1—P1iv −159.56 (17) O5—P2—Li1—P1 −119.08 (11)
P1—O2—Li1—P3v 133.82 (15) O4—P2—Li1—P1 164.1 (2)
P1—O2—Li1—P2 −17.96 (18) O6—P2—Li1—P1 85.86 (9)
P2—O4—Li1—O2 −7.3 (3) O3—P2—Li1—P1 −13.68 (6)
P2—O4—Li1—O1iv 115.71 (19) O5—P2—Li1—P1iv 29.2 (3)
P2—O4—Li1—O7v −130.98 (17) O4—P2—Li1—P1iv −47.53 (18)
P2—O4—Li1—P1 −13.53 (18) O6—P2—Li1—P1iv −125.81 (18)
P2—O4—Li1—P1iv 143.28 (13) O3—P2—Li1—P1iv 134.6 (2)
P2—O4—Li1—P3v −146.51 (15) O5—P2—Li1—P3v 129.8 (2)
O1—P1—Li1—O2 −29.0 (3) O4—P2—Li1—P3v 53.0 (2)
O3—P1—Li1—O2 −145.1 (2) O6—P2—Li1—P3v −25.3 (3)
O9—P1—Li1—O2 116.1 (2) O3—P2—Li1—P3v −124.8 (3)
Li1i—P1—Li1—O2 25.6 (3) C3—N2—C2—C1 −58.0 (2)
O2—P1—Li1—O1iv 54.2 (2) N1—C1—C2—N2 59.0 (2)
O1—P1—Li1—O1iv 25.1 (4)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+3/2, z+1/2; (v) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H2A···O8 0.90 1.99 2.792 (3) 147
N1—H2B···O7vi 0.90 1.88 2.763 (3) 166
N2—H3A···O11 0.90 1.83 2.707 (4) 165
N2—H3B···O4vii 0.90 1.91 2.802 (2) 168
O10—H110···O1viii 0.84 (4) 1.99 (4) 2.792 (4) 159 (5)
O11—H111···O5viii 0.84 (3) 2.49 (4) 3.001 (3) 120 (3)
O11—H111···O8viii 0.84 (3) 2.07 (3) 2.826 (3) 150 (4)
O10—H210···O5vi 0.82 (4) 1.95 (4) 2.764 (3) 170 (4)
O11—H211···O10viii 0.86 (4) 1.87 (4) 2.720 (4) 170 (4)
C1—H1A···O6ii 0.97 2.51 3.273 (4) 135
C4—H1D···O10 0.97 2.56 3.227 (4) 126
C2—H2C···O2i 0.97 2.29 3.078 (3) 137
C3—H4B···O5viii 0.97 2.46 3.324 (4) 148

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z; (vi) x, −y+5/2, z−1/2; (vii) x, y, z−1; (viii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2476).

References

  1. Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550. [DOI] [PMC free article] [PubMed]
  2. Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. [DOI] [PMC free article] [PubMed]
  3. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012). Acta Cryst. E68, i30. [DOI] [PMC free article] [PubMed]
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  8. Mahesh, S., Green, M. A. & Natarajan, S. (2002). J. Solid State Chem. 165, 334–342.
  9. Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702. [DOI] [PMC free article] [PubMed]
  10. Natarajan, S. (2000). Proc. Indian Acad. Sci. Chem. Sci. 112, 249–272.
  11. Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Xu, H., Dong, P., Liu, L., Wang, J.-G., Deng, F. & Dong, J.-X. (2007). J. Porous Mater. 14, 97–101.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011756/pk2476sup1.cif

e-69-0m305-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011756/pk2476Isup2.hkl

e-69-0m305-Isup2.hkl (310.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES