Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):m309–m310. doi: 10.1107/S1600536813012208

Bis(3-amino­pyrazine-2-carboxyl­ato-κ2 N 1,O)di­aqua­nickel(II) dihydrate

Rafika Bouchene a,b, Amina Khadri a,b, Sofiane Bouacida c,b,*, Fadila Berrah a,b, Hocine Merazig c
PMCID: PMC3684875  PMID: 23794977

Abstract

In the title compound, [Ni(C5H4N3O2)2(H2O)2]·2H2O, the NiII ion lies on an inversion center and is coordinated in an slightly distorted octa­hedral environment by two N,O-chelating 3-amino­pyrazine-2-carboxyl­ate (APZC) ligands in the equatorial plane and two trans-axial aqua ligands. In the crystal, O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving the solvent water mol­ecules, aqua and APZC ligands form layers parallel to (010). These layers are linked further via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving the axial aqua ligands, amino groups and the carboxyl­ate groups of the APZC ligands, forming a three-dimensional network.

Related literature  

For background to hybrid compounds, see: Bouchene et al. (2013); Bouacida et al. (2007, 2009). For the structure of the non-hydrated analogue, see: Ptasiewicz-Bak & Leciejewicz (1999). For 3-amino­pyrazine-2-carboxyl­ate–metal (M) complexes, see: Bouchene et al. (2013) [M = Co(II)]; Leciejewicz et al. (1997) [M = Ca(II)]; Leciejewicz et al. (1998) [M = Sr(II)]; Ptasiewicz-Bak & Leciejewicz (1997) [M = Mg(II)]; Tayebee et al. (2008) [M = Na(I)]; Ptasiewicz-Bak & Leciejewicz (1999). For proprieties and applications of pyrazine-2-carb­oxy­lic acid, see: Zhang & Mitchison (2003); Manju & Chaudhary, (2010); Chanda & Sangeetika (2004).graphic file with name e-69-0m309-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C5H4N3O2)2(H2O)2]·2H2O

  • M r = 406.98

  • Monoclinic, Inline graphic

  • a = 9.7939 (15) Å

  • b = 5.1123 (9) Å

  • c = 16.776 (3) Å

  • β = 115.838 (11)°

  • V = 756.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 6200 measured reflections

  • 1326 independent reflections

  • 1121 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.073

  • S = 1.04

  • 1326 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813012208/lh5610sup1.cif

e-69-0m309-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012208/lh5610Isup2.hkl

e-69-0m309-Isup2.hkl (64.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2W i 0.83 (3) 1.97 (3) 2.789 (3) 169 (3)
O1W—H1B⋯O1ii 0.75 (3) 1.94 (3) 2.690 (3) 176 (4)
N3—H1N⋯O2W iii 0.86 2.27 3.117 (3) 168
O2W—H2A⋯O2W iv 0.77 (3) 2.12 (3) 2.867 (3) 164 (4)
O2W—H2B⋯N2v 0.78 (3) 2.03 (3) 2.792 (3) 168 (3)
N3—H2N⋯O2 0.86 2.10 2.733 (3) 130
N3—H2N⋯O2vi 0.86 2.20 2.871 (3) 135
C5—H5⋯O1W vii 0.93 2.54 3.377 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We are grateful to all personal of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to MESRS and ATRST (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et l’Agence Thématique de Recherche en Sciences et Technologie - Algeria) via the PNR programm for financial support.

supplementary crystallographic information

Comment

The pyrazine-2-carboxylic acid bridging ligand, owing to its ability to act in acidic environments (Zhang & Mitchison, 2003), has been extensively studied for biological applications, such as anti-tubercular (Manju et al., 2010), antipyretic, antitumor, and anticancer (Chanda et al., 2004). An additional amino substitution on 3-amino-2-pyrazine carboxylic acid could be expected to enhance crystal packing through extensive hydrogen bonding. APZC has a large variety of coordination geometries in metal complexes (Leciejewicz et al., 1997, 1998; Ptasiewicz-Bak & Leciejewicz, 1997; Tayebee et al., 2008).

In continuation of our search to enrich the variety of such kinds of hybrid compounds and to investigate the influence of hydrogen bonds on the structural features (Bouacida et al., 2007, 2009), we report here the synthesis and crystal structure of the title compound, (I), as a extention of our earlier work on N,O chelated ligands (Bouchene et al.2013) which can be involved in covalent interactions in metal coordination chemistry.

The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic inversion center. The molecular structure is shown in Fig. 1. The NiII ion is coordinated by two 3-amino-2-pyrazine carboxylate ligands via N,O-chelating groups in the equatorial plane and two aqua O atoms in the axial sites forming a slightly distorted octahedral coordination environment. The Ni—N, Ni—O and Ni—Oaqua distances are consistent with the reported data for the anhydrous Ni(II)(APZC)2(H2O)2 complex (Ptasiewicz-Bak & Leciejewicz, 1999). In the crystal, the solvent water molecules and complex molecules are involved in intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds forming two-dimensional layers parallel to (010) (Fig.2). Further O—H···O hydrogen bonds (Fig.3) involving the aqua ligands, N—H···.O hydrogen bonds the carboxylate groups of the APZC ligands form a three-dimensional network.

Experimental

Nickel dichloride hexahydrate (0.2 mmol) and 3-aminopyrazine-2-carboxylic acid (0.02 mmol) were dissolved in acidified water with concentrated hydrogen chloride acid (37%). Light green crystals, suitable for X-ray diffraction study, were obtained from evaporation of obtained solution for three days.

Refinement

The H atoms bonded to C and N were located in differnce Fourier maps but subsequently introduced in calculated positions and treated as riding on their parent atoms (C or N) with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). Atoms H1W and H2W were located in a difference Fourier map and refined isotropically wirh Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i)-x+1, -y+1, -z+2.

Fig. 2.

Fig. 2.

Partial packing plot viewed along the b axis showing the hydrogen bonds (dashed lines) forming layers.

Fig. 3.

Fig. 3.

Partial packing of (I) showing only the O—H···O hydrogen bonds which connect the layers in Fig. 2 into a three-dimensional network.

Crystal data

[Ni(C5H4N3O2)2(H2O)2]·2H2O F(000) = 420
Mr = 406.98 Dx = 1.788 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.7939 (15) Å Cell parameters from 2285 reflections
b = 5.1123 (9) Å θ = 2.7–25°
c = 16.776 (3) Å µ = 1.34 mm1
β = 115.838 (11)° T = 150 K
V = 756.0 (2) Å3 Cube, white
Z = 2 0.18 × 0.16 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 1121 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.051
Graphite monochromator θmax = 25.1°, θmin = 2.7°
φ and ω scans h = −11→11
6200 measured reflections k = −6→6
1326 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.4886P] where P = (Fo2 + 2Fc2)/3
1326 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2428 (3) 0.2367 (5) 0.99519 (16) 0.0089 (5)
C2 0.2750 (3) 0.4494 (4) 1.06347 (15) 0.0079 (5)
C3 0.1864 (3) 0.4915 (5) 1.11094 (15) 0.0090 (5)
C4 0.3430 (3) 0.8353 (5) 1.18295 (16) 0.0098 (5)
H4 0.3692 0.9711 1.2239 0.012*
C5 0.4304 (3) 0.7942 (5) 1.13805 (15) 0.0097 (5)
H5 0.5141 0.8999 1.1492 0.012*
N1 0.3937 (2) 0.6010 (4) 1.07831 (13) 0.0074 (4)
N2 0.2227 (2) 0.6890 (4) 1.17019 (13) 0.0102 (4)
N3 0.0696 (2) 0.3396 (4) 1.10092 (14) 0.0125 (5)
H1N 0.0202 0.3689 1.1316 0.015*
H2N 0.0436 0.2122 1.0637 0.015*
O1 0.33555 (17) 0.2240 (3) 0.96010 (11) 0.0090 (4)
O2 0.13487 (18) 0.0885 (3) 0.97784 (12) 0.0137 (4)
O1W 0.6426 (2) 0.2542 (4) 1.10017 (12) 0.0102 (4)
H1A 0.726 (3) 0.312 (6) 1.1356 (19) 0.015*
H1B 0.652 (3) 0.124 (6) 1.083 (2) 0.015*
O2W 0.0735 (2) 0.6137 (4) 0.76616 (12) 0.0133 (4)
H2A 0.046 (4) 0.472 (6) 0.754 (2) 0.02*
H2B 0.104 (3) 0.663 (6) 0.733 (2) 0.02*
Ni1 0.5 0.5 1 0.00664 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0073 (11) 0.0071 (12) 0.0116 (12) 0.0010 (9) 0.0036 (10) 0.0014 (10)
C2 0.0067 (12) 0.0078 (12) 0.0087 (11) 0.0002 (9) 0.0029 (10) 0.0009 (9)
C3 0.0078 (11) 0.0088 (12) 0.0098 (11) 0.0029 (10) 0.0031 (9) 0.0029 (11)
C4 0.0114 (12) 0.0077 (12) 0.0105 (12) −0.0014 (9) 0.0050 (10) −0.0024 (10)
C5 0.0068 (12) 0.0089 (12) 0.0137 (13) −0.0011 (9) 0.0048 (10) −0.0017 (10)
N1 0.0040 (10) 0.0067 (10) 0.0102 (10) 0.0004 (8) 0.0019 (8) 0.0009 (8)
N2 0.0097 (10) 0.0101 (11) 0.0123 (10) −0.0008 (8) 0.0061 (9) 0.0001 (8)
N3 0.0094 (10) 0.0139 (11) 0.0195 (11) −0.0052 (9) 0.0113 (9) −0.0056 (9)
O1 0.0069 (8) 0.0093 (8) 0.0137 (9) −0.0018 (7) 0.0073 (7) −0.0032 (7)
O2 0.0092 (9) 0.0135 (9) 0.0213 (10) −0.0055 (7) 0.0092 (8) −0.0059 (8)
O1W 0.0077 (9) 0.0081 (9) 0.0147 (9) −0.0015 (7) 0.0046 (8) −0.0030 (8)
O2W 0.0148 (10) 0.0129 (9) 0.0169 (10) −0.0035 (8) 0.0115 (8) −0.0018 (8)
Ni1 0.0049 (2) 0.0062 (2) 0.0106 (2) −0.00089 (17) 0.00506 (18) −0.00108 (18)

Geometric parameters (Å, º)

C1—O2 1.228 (3) N1—Ni1 2.0657 (19)
C1—O1 1.281 (3) N3—H1N 0.86
C1—C2 1.510 (3) N3—H2N 0.86
C2—N1 1.327 (3) O1—Ni1 2.0233 (16)
C2—C3 1.427 (3) O1W—Ni1 2.0755 (18)
C3—N3 1.331 (3) O1W—H1A 0.83 (3)
C3—N2 1.351 (3) O1W—H1B 0.74 (3)
C4—N2 1.332 (3) O2W—H2A 0.77 (3)
C4—C5 1.381 (3) O2W—H2B 0.78 (3)
C4—H4 0.93 Ni1—O1i 2.0233 (16)
C5—N1 1.340 (3) Ni1—N1i 2.066 (2)
C5—H5 0.93 Ni1—O1Wi 2.0755 (18)
O2—C1—O1 124.7 (2) H1N—N3—H2N 120
O2—C1—C2 119.8 (2) C1—O1—Ni1 115.72 (15)
O1—C1—C2 115.5 (2) Ni1—O1W—H1A 118 (2)
N1—C2—C3 120.2 (2) Ni1—O1W—H1B 113 (2)
N1—C2—C1 116.0 (2) H1A—O1W—H1B 110 (3)
C3—C2—C1 123.7 (2) H2A—O2W—H2B 108 (3)
N3—C3—N2 117.7 (2) O1—Ni1—O1i 180
N3—C3—C2 122.7 (2) O1—Ni1—N1 80.54 (7)
N2—C3—C2 119.6 (2) O1i—Ni1—N1 99.46 (7)
N2—C4—C5 122.8 (2) O1—Ni1—N1i 99.46 (7)
N2—C4—H4 118.6 O1i—Ni1—N1i 80.54 (7)
C5—C4—H4 118.6 N1—Ni1—N1i 180.0000 (10)
N1—C5—C4 119.5 (2) O1—Ni1—O1Wi 89.81 (7)
N1—C5—H5 120.3 O1i—Ni1—O1Wi 90.19 (7)
C4—C5—H5 120.3 N1—Ni1—O1Wi 90.92 (7)
C2—N1—C5 119.9 (2) N1i—Ni1—O1Wi 89.08 (7)
C2—N1—Ni1 112.20 (15) O1—Ni1—O1W 90.19 (7)
C5—N1—Ni1 127.92 (16) O1i—Ni1—O1W 89.81 (7)
C4—N2—C3 117.9 (2) N1—Ni1—O1W 89.08 (7)
C3—N3—H1N 120 N1i—Ni1—O1W 90.92 (7)
C3—N3—H2N 120 O1Wi—Ni1—O1W 180.00 (9)
O2—C1—C2—N1 180.0 (2) N3—C3—N2—C4 177.5 (2)
O1—C1—C2—N1 1.0 (3) C2—C3—N2—C4 −1.1 (3)
O2—C1—C2—C3 0.2 (4) O2—C1—O1—Ni1 178.74 (18)
O1—C1—C2—C3 −178.8 (2) C2—C1—O1—Ni1 −2.3 (3)
N1—C2—C3—N3 −177.5 (2) C1—O1—Ni1—N1 2.15 (16)
C1—C2—C3—N3 2.3 (4) C1—O1—Ni1—N1i −177.85 (16)
N1—C2—C3—N2 1.0 (3) C1—O1—Ni1—O1Wi −88.81 (16)
C1—C2—C3—N2 −179.2 (2) C1—O1—Ni1—O1W 91.19 (16)
N2—C4—C5—N1 0.5 (4) C2—N1—Ni1—O1 −1.50 (15)
C3—C2—N1—C5 0.0 (3) C5—N1—Ni1—O1 179.2 (2)
C1—C2—N1—C5 −179.9 (2) C2—N1—Ni1—O1i 178.50 (15)
C3—C2—N1—Ni1 −179.41 (17) C5—N1—Ni1—O1i −0.8 (2)
C1—C2—N1—Ni1 0.8 (2) C2—N1—Ni1—O1Wi 88.16 (16)
C4—C5—N1—C2 −0.7 (3) C5—N1—Ni1—O1Wi −91.1 (2)
C4—C5—N1—Ni1 178.57 (17) C2—N1—Ni1—O1W −91.84 (16)
C5—C4—N2—C3 0.4 (3) C5—N1—Ni1—O1W 88.9 (2)

Symmetry code: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1A···O2Wi 0.83 (3) 1.97 (3) 2.789 (3) 169 (3)
O1W—H1B···O1ii 0.75 (3) 1.94 (3) 2.690 (3) 176 (4)
N3—H1N···O2Wiii 0.86 2.27 3.117 (3) 168
O2W—H2A···O2Wiv 0.77 (3) 2.12 (3) 2.867 (3) 164 (4)
O2W—H2B···N2v 0.78 (3) 2.03 (3) 2.792 (3) 168 (3)
N3—H2N···O2 0.86 2.10 2.733 (3) 130
N3—H2N···O2vi 0.86 2.20 2.871 (3) 135
C5—H5···O1Wvii 0.93 2.54 3.377 (4) 150

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+2; (iv) −x, y−1/2, −z+3/2; (v) x, −y+3/2, z−1/2; (vi) −x, −y, −z+2; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5610).

References

  1. Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629. [DOI] [PMC free article] [PubMed]
  2. Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.
  3. Bouchene, R., Bouacida, S., Berrah, F., Belhouas, R. & Merazig, H. (2013). Acta Cryst. E69, m129–m130. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  5. Bruker (2011). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Chanda, S. & Sangeetika, J. (2004). J. Indian Chem. Soc. 81, 203–206.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Leciejewicz, J., Ptasiewicz-Bak, H. & Paluchowska, B. (1997). Pol. J. Chem. 71, 1339–1364.
  10. Leciejewicz, J., Ptasiewicz-Bak, H. & Zachara, J. (1998). Pol. J. Chem. 72, 1994–1998.
  11. Manju, A. & Chaudhary, D. (2010). Asian J. Chem. Environ. Res. 3, 13–17.
  12. Ptasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350–1358.
  13. Ptasiewicz-Bak, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717–725.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Tayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem. 26, 500–504.
  16. Zhang, Y. & Mitchison, D. A. (2003). Int. J. Tuberc. Lung Dis. 7,6–21. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813012208/lh5610sup1.cif

e-69-0m309-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012208/lh5610Isup2.hkl

e-69-0m309-Isup2.hkl (64.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES