Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 18;69(Pt 6):m331. doi: 10.1107/S1600536813013202

trans-Dichloridobis{2-chloro-6-[(3-fluoro­benz­yl)amino]-9-isopropyl-9H-purine-κN 7}platinum(II)

Zdeněk Trávníček a,*, Pavel Štarha a
PMCID: PMC3684891  PMID: 23794993

Abstract

In the title compound, trans-[PtCl2(C15H15ClFN5)2], the PtII atom, located on an inversion centre, is coordinated by the purine N atoms of the 2-chloro-6-[(3-fluoro­benz­yl)amino]-9-isopropyl-9H-purine ligands and two Cl atoms in a slightly distorted trans-square-planar coordination geometry [N—Pt—Cl angles = 89.91 (5) and 90.09 (5)°]. Weak intra­molecular N—H⋯Cl contacts occur. In the crystal, C—H⋯Cl and C—H⋯F contacts, as well as weak π–π stacking inter­actions [centroid–centroid distances = 3.5000 (11) and 3.6495 (12) Å] connect the mol­ecules into a three-dimensional architecture.

Related literature  

For the structures of platinum(II) dichlorido complexes involving different 2-chloro-6-[(substituted-benz­yl)amino]-9-isopropyl-9H-purine derivatives, see: Trávníček et al. (2006); Szüčová et al. (2008). For the synthesis of 2-chloro-6-[(substituted-benzyl)amino]-9-isopropyl-9H-purine derivatives, see: Štarha et al. (2009).graphic file with name e-69-0m331-scheme1.jpg

Experimental  

Crystal data  

  • [PtCl2(C15H15ClFN5)2]

  • M r = 905.53

  • Monoclinic, Inline graphic

  • a = 9.37786 (13) Å

  • b = 12.86530 (17) Å

  • c = 14.2891 (2) Å

  • β = 107.9165 (16)°

  • V = 1640.36 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.65 mm−1

  • T = 105 K

  • 0.35 × 0.35 × 0.35 mm

Data collection  

  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.293, T max = 0.293

  • 13582 measured reflections

  • 2881 independent reflections

  • 2726 reflections with I > 2σ(I)

  • R int = 0.010

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.015

  • wR(F 2) = 0.037

  • S = 1.10

  • 2881 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813013202/jj2166sup1.cif

e-69-0m331-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013202/jj2166Isup2.hkl

e-69-0m331-Isup2.hkl (141.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯Cl2i 0.88 2.53 3.222 (2) 136
C13—H13A⋯Cl2ii 0.95 2.86 3.492 (2) 125
C18—H18A⋯F1iii 0.98 2.49 3.450 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

supplementary crystallographic information

Comment

In the title compound, the PtII atom is located on an inversion centre and thus, the asymmetric unit contains one-half of the described platinum(II) complex (Fig. 1). The central PtII atom is four-coordinated by two chloride anions [Pt—Cl = 2.2940 (5) Å] and two 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine molecules [Pt—N = 2.011 (2) Å], which are bonded to platinum through their N7 atoms of the purine moieties. The geometry of the complex is slightly distorted square-planar with the N—Pt—Cl angles in the vicinity of the central metal atom of 89.91 (5)° and 90.09 (5)°, and the mean plane fitted through the PtCl2N2 unit (r.m.s. deviation = 0.000 Å) being planar. Both the essentially planar purine moieties [with the maximum deviation of 0.050 (2) Å for the C5 atom] are mutually coplanar and each of them forms the dihedral angle of 62.04 (3)° and 49.58 (5)° with the PtCl2N2 unit, and the benzene ring, respectively (Fig. 1). The molecular structure involves weak N6—H6A···Cl2 intramolecular interactions (Table 1, Fig. 1). In the crystal, the molecules are connected together through weak C13—H13A···Cl2, C18—H18A···F1 and π···π (between the six-membered pyrimidine and benzene rings) intermolecular interactions into a three-dimensional architecture (Fig. 2 and 3, Table 1).

Experimental

The solution of 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine (0.5 mmol; prepared according to the previously described procedure, (Štarha et al., 2009) in acetone (10 ml) was slowly poured into the distilled water solution of K2PtCl4 (0.25 mmol). The reaction mixture was stirred at laboratory temperature, until the initial orange colour turned to yellow. The solid was collected by filtration and washed with distilled water and acetone. Part of the product was recrystallized from N,N`-dimethylformamide. The crystals suitable for a single-crystal X-ray analysis formed after two weeks. Analysis calculated for C30H30N10Cl4F2Pt1: C 39.8, H 3.3, N 15.5%; found: C 39.9, H 3.3, N 15.3%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3). The maximum and minimum residual electron density peaks of 0.52 and -0.32 e Å-3 were located 0.87 Å, and 0.27 Å from the Pt1, and H6A atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme and the non-hydrogen atoms at the 50% probability level. Dashed lines indicate weak N6—H6A···Cl2i intramolecular interactions (symmetry code: i) -x, -y, -z).

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C13—H13Aiv···Cl2 intermolecular and π···π stacking interactions (Cg···Cg = 3.5001 Å) (symmetry code: iv) x, -y+1/2, z + 1/2).

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak C18—H18A···F1iii intermolecular interactions (symmetry code: iii) -x+1, -y, -z).

Crystal data

[PtCl2(C15H15ClFN5)2] F(000) = 888
Mr = 905.53 Dx = 1.833 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15658 reflections
a = 9.37786 (13) Å θ = 3.0–31.7°
b = 12.86530 (17) Å µ = 4.65 mm1
c = 14.2891 (2) Å T = 105 K
β = 107.9165 (16)° Prism, yellow-orange
V = 1640.36 (4) Å3 0.35 × 0.35 × 0.35 mm
Z = 2

Data collection

Agilent Xcalibur Sapphire2 diffractometer 2881 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2726 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.010
Detector resolution: 8.3611 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −15→13
Tmin = 0.293, Tmax = 0.293 l = −16→16
13582 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.5464P] where P = (Fo2 + 2Fc2)/3
2881 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.0000 0.0000 0.0000 0.01222 (5)
Cl1 0.73503 (6) 0.18413 (6) 0.31702 (4) 0.03616 (16)
Cl2 −0.15533 (5) 0.11059 (4) 0.04896 (4) 0.02297 (12)
F1 0.32167 (15) 0.15374 (11) −0.40416 (9) 0.0297 (3)
N1 0.52347 (19) 0.13487 (14) 0.15853 (12) 0.0174 (4)
N3 0.49172 (18) 0.08828 (14) 0.31434 (12) 0.0164 (4)
N6 0.34612 (19) 0.10095 (14) 0.00859 (12) 0.0176 (4)
H6A 0.2599 0.0723 −0.0239 0.021*
N7 0.1537 (2) 0.01264 (12) 0.13330 (14) 0.0145 (4)
N9 0.2482 (2) 0.01119 (12) 0.29616 (14) 0.0148 (4)
C2 0.5616 (2) 0.12816 (17) 0.25559 (15) 0.0189 (4)
C4 0.3566 (2) 0.05155 (15) 0.26050 (14) 0.0137 (4)
C5 0.2990 (2) 0.05145 (15) 0.15906 (14) 0.0137 (4)
C6 0.3894 (2) 0.09529 (15) 0.10649 (14) 0.0140 (4)
C8 0.1290 (3) −0.01030 (15) 0.21725 (17) 0.0160 (4)
H8A 0.0377 −0.0387 0.2215 0.019*
C9 0.4310 (2) 0.15101 (17) −0.04837 (15) 0.0187 (4)
H9A 0.5135 0.1049 −0.0524 0.022*
H9B 0.4755 0.2165 −0.0159 0.022*
C10 0.3281 (2) 0.17380 (15) −0.15035 (15) 0.0157 (4)
C11 0.3731 (2) 0.15135 (16) −0.23221 (15) 0.0179 (4)
H11A 0.4677 0.1201 −0.2251 0.021*
C12 0.2768 (2) 0.17560 (16) −0.32396 (15) 0.0179 (4)
C13 0.1394 (2) 0.22057 (16) −0.33922 (15) 0.0205 (4)
H13A 0.0766 0.2364 −0.4037 0.025*
C14 0.0949 (2) 0.24231 (17) −0.25725 (16) 0.0209 (4)
H14A 0.0000 0.2733 −0.2652 0.025*
C15 0.1886 (2) 0.21895 (16) −0.16387 (15) 0.0191 (4)
H15A 0.1569 0.2340 −0.1083 0.023*
C16 0.2665 (3) −0.01102 (16) 0.40122 (16) 0.0181 (5)
H16A 0.3434 0.0378 0.4424 0.022*
C17 0.1208 (3) 0.00727 (17) 0.42384 (19) 0.0238 (5)
H17A 0.0852 0.0780 0.4042 0.036*
H17B 0.1375 −0.0014 0.4945 0.036*
H17C 0.0455 −0.0429 0.3874 0.036*
C18 0.3242 (3) −0.1208 (2) 0.42492 (17) 0.0307 (5)
H18A 0.4155 −0.1299 0.4062 0.046*
H18B 0.2477 −0.1702 0.3883 0.046*
H18C 0.3466 −0.1333 0.4956 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.00955 (7) 0.01405 (7) 0.01116 (7) −0.00130 (4) 0.00039 (5) −0.00091 (4)
Cl1 0.0192 (3) 0.0674 (5) 0.0179 (3) −0.0222 (3) −0.0002 (2) 0.0010 (3)
Cl2 0.0140 (2) 0.0248 (3) 0.0274 (3) 0.0009 (2) 0.0023 (2) −0.0114 (2)
F1 0.0371 (8) 0.0390 (8) 0.0154 (6) 0.0029 (6) 0.0115 (6) −0.0034 (6)
N1 0.0135 (8) 0.0234 (9) 0.0147 (8) −0.0018 (7) 0.0034 (7) 0.0004 (7)
N3 0.0122 (8) 0.0219 (9) 0.0140 (8) −0.0012 (7) 0.0022 (7) −0.0011 (7)
N6 0.0149 (8) 0.0232 (9) 0.0123 (8) −0.0060 (7) 0.0008 (7) 0.0012 (7)
N7 0.0133 (9) 0.0159 (9) 0.0130 (9) −0.0009 (6) 0.0022 (7) −0.0001 (6)
N9 0.0141 (9) 0.0180 (9) 0.0112 (9) −0.0013 (6) 0.0024 (7) 0.0007 (6)
C2 0.0112 (9) 0.0260 (12) 0.0174 (10) −0.0028 (8) 0.0010 (8) −0.0011 (9)
C4 0.0133 (9) 0.0137 (10) 0.0140 (10) 0.0016 (8) 0.0039 (8) 0.0006 (8)
C5 0.0124 (9) 0.0125 (10) 0.0145 (9) 0.0013 (8) 0.0015 (8) −0.0010 (8)
C6 0.0128 (9) 0.0133 (10) 0.0148 (10) 0.0016 (8) 0.0026 (8) −0.0006 (8)
C8 0.0125 (11) 0.0189 (11) 0.0155 (11) −0.0032 (8) 0.0024 (9) −0.0003 (8)
C9 0.0155 (10) 0.0247 (11) 0.0158 (10) −0.0026 (9) 0.0046 (8) 0.0018 (9)
C10 0.0166 (10) 0.0139 (10) 0.0163 (10) −0.0030 (8) 0.0046 (8) 0.0005 (8)
C11 0.0177 (10) 0.0170 (10) 0.0192 (10) 0.0007 (8) 0.0059 (8) 0.0010 (8)
C12 0.0247 (11) 0.0170 (10) 0.0138 (10) −0.0026 (9) 0.0085 (9) −0.0006 (8)
C13 0.0222 (11) 0.0191 (11) 0.0169 (10) −0.0020 (9) 0.0009 (8) 0.0044 (8)
C14 0.0148 (10) 0.0200 (11) 0.0268 (11) 0.0022 (8) 0.0050 (9) 0.0051 (9)
C15 0.0214 (11) 0.0196 (11) 0.0187 (10) 0.0007 (9) 0.0098 (9) 0.0009 (9)
C16 0.0164 (11) 0.0283 (12) 0.0097 (10) −0.0043 (8) 0.0039 (9) −0.0014 (8)
C17 0.0232 (13) 0.0290 (13) 0.0227 (13) −0.0019 (9) 0.0121 (10) −0.0015 (9)
C18 0.0334 (13) 0.0408 (14) 0.0195 (11) 0.0122 (11) 0.0103 (10) 0.0117 (10)

Geometric parameters (Å, º)

Pt1—N7 2.0108 (18) C9—H9A 0.9900
Pt1—N7i 2.0109 (18) C9—H9B 0.9900
Pt1—Cl2 2.2940 (5) C10—C15 1.390 (3)
Pt1—Cl2i 2.2940 (5) C10—C11 1.390 (3)
Cl1—C2 1.748 (2) C11—C12 1.380 (3)
F1—C12 1.366 (2) C11—H11A 0.9500
N1—C2 1.324 (3) C12—C13 1.368 (3)
N1—C6 1.348 (3) C13—C14 1.387 (3)
N3—C2 1.317 (3) C13—H13A 0.9500
N3—C4 1.349 (3) C14—C15 1.386 (3)
N6—C6 1.333 (3) C14—H14A 0.9500
N6—C9 1.453 (3) C15—H15A 0.9500
N6—H6A 0.8800 C16—C18 1.513 (3)
N7—C8 1.323 (3) C16—C17 1.516 (3)
N7—C5 1.390 (3) C16—H16A 1.0000
N9—C8 1.350 (3) C17—H17A 0.9800
N9—C4 1.372 (3) C17—H17B 0.9800
N9—C16 1.485 (3) C17—H17C 0.9800
C4—C5 1.382 (3) C18—H18A 0.9800
C5—C6 1.412 (3) C18—H18B 0.9800
C8—H8A 0.9500 C18—H18C 0.9800
C9—C10 1.508 (3)
N7—Pt1—N7i 180.0 H9A—C9—H9B 108.3
N7—Pt1—Cl2 89.91 (5) C15—C10—C11 119.10 (19)
N7i—Pt1—Cl2 90.09 (5) C15—C10—C9 120.70 (18)
N7—Pt1—Cl2i 90.09 (5) C11—C10—C9 120.19 (18)
N7i—Pt1—Cl2i 89.91 (5) C12—C11—C10 118.25 (19)
Cl2—Pt1—Cl2i 180.00 (3) C12—C11—H11A 120.9
C2—N1—C6 117.27 (17) C10—C11—H11A 120.9
C2—N3—C4 109.68 (17) C13—C12—F1 118.13 (19)
C6—N6—C9 124.74 (17) C13—C12—C11 123.80 (19)
C6—N6—H6A 117.6 F1—C12—C11 118.06 (19)
C9—N6—H6A 117.6 C12—C13—C14 117.65 (19)
C8—N7—C5 105.71 (18) C12—C13—H13A 121.2
C8—N7—Pt1 124.49 (15) C14—C13—H13A 121.2
C5—N7—Pt1 129.68 (14) C15—C14—C13 120.2 (2)
C8—N9—C4 106.56 (18) C15—C14—H14A 119.9
C8—N9—C16 127.83 (19) C13—C14—H14A 119.9
C4—N9—C16 125.45 (18) C14—C15—C10 121.01 (19)
N3—C2—N1 131.76 (19) C14—C15—H15A 119.5
N3—C2—Cl1 114.12 (15) C10—C15—H15A 119.5
N1—C2—Cl1 114.11 (15) N9—C16—C18 109.15 (17)
N3—C4—N9 126.44 (18) N9—C16—C17 110.76 (19)
N3—C4—C5 126.43 (18) C18—C16—C17 112.39 (19)
N9—C4—C5 107.08 (17) N9—C16—H16A 108.1
C4—C5—N7 108.25 (17) C18—C16—H16A 108.1
C4—C5—C6 116.90 (17) C17—C16—H16A 108.1
N7—C5—C6 134.64 (18) C16—C17—H17A 109.5
N6—C6—N1 119.28 (18) C16—C17—H17B 109.5
N6—C6—C5 122.78 (18) H17A—C17—H17B 109.5
N1—C6—C5 117.92 (17) C16—C17—H17C 109.5
N7—C8—N9 112.38 (19) H17A—C17—H17C 109.5
N7—C8—H8A 123.8 H17B—C17—H17C 109.5
N9—C8—H8A 123.8 C16—C18—H18A 109.5
N6—C9—C10 109.24 (16) C16—C18—H18B 109.5
N6—C9—H9A 109.8 H18A—C18—H18B 109.5
C10—C9—H9A 109.8 C16—C18—H18C 109.5
N6—C9—H9B 109.8 H18A—C18—H18C 109.5
C10—C9—H9B 109.8 H18B—C18—H18C 109.5

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6A···Cl2i 0.88 2.53 3.222 (2) 136
C13—H13A···Cl2ii 0.95 2.86 3.492 (2) 125
C18—H18A···F1iii 0.98 2.49 3.450 (3) 166

Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2166).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Štarha, P., Trávníček, Z. & Popa, I. (2009). J. Inorg. Biochem. 103, 978–988. [DOI] [PubMed]
  5. Szüčová, L., Trávníček, Z., Popa, I. & Marek, J. (2008). Polyhedron, 27, 2710–2720.
  6. Trávníček, Z., Marek, J. & Szüčová, L. (2006). Acta Cryst. E62, m1482–m1484.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813013202/jj2166sup1.cif

e-69-0m331-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013202/jj2166Isup2.hkl

e-69-0m331-Isup2.hkl (141.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES