Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 25;69(Pt 6):m340. doi: 10.1107/S1600536813014128

Tris(aceto­nitrile-κN)dichlorido(tri­phenyl­phosphane-κP)ruthenium(II) aceto­nitrile monosolvate

Xiao-Feng Yin a, Yi Qin a, Hua-Tian Shi b, Qun Chen a, Qian-Feng Zhang b,a,*
PMCID: PMC3684898  PMID: 23795000

Abstract

In the title complex, [RuCl2(CH3CN)3(C18H15P)]·CH3CN, the coordination geometry of the RuII atom is distorted octa­hedral, defined by one P atom from a tri­phenyl­phosphane ligand, three N atoms from three aceto­nitrile ligands and two Cl atoms. The three acetronitile ligands linearly bind to the RuII atom, with Ru—N—C angles of 172.6 (2), 179.9 (2) and 171.4 (2)°.

Related literature  

For background to ruthenium complexes, see: Caulton (1974); Gilbert & Wilkinson (1969); Hallman et al. (1970); Jansen et al. (2000); Stephenson & Wilkinson (1966); Trost et al. (2001). For related structures, see: Al-Far & Slaughter (2008); Naskar & Bhattacharjee (2005).graphic file with name e-69-0m340-scheme1.jpg

Experimental  

Crystal data  

  • [RuCl2(C2H3N)3(C18H15P)]·C2H3N

  • M r = 598.46

  • Monoclinic, Inline graphic

  • a = 15.1133 (13) Å

  • b = 13.9144 (12) Å

  • c = 13.3121 (12) Å

  • β = 99.275 (2)°

  • V = 2762.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.884, T max = 0.921

  • 16271 measured reflections

  • 5403 independent reflections

  • 4544 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.063

  • S = 1.04

  • 5403 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014128/hy2625sup1.cif

e-69-0m340-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014128/hy2625Isup2.hkl

e-69-0m340-Isup2.hkl (264.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru1—N1 2.0218 (19)
Ru1—N2 2.0141 (19)
Ru1—N3 2.0044 (18)
Ru1—P1 2.2754 (6)
Ru1—Cl1 2.4080 (6)
Ru1—Cl2 2.5007 (6)

Acknowledgments

This project was supported by the Natural Science Foundation of China (grant No. 20771003).

supplementary crystallographic information

Comment

The structural and reactivity studies of coordinatively unsaturated ruthenium complexes have received much attention due to their versatile and diverse applications in organic transformation (Jansen et al., 2000; Trost et al., 2001). Since Stephenson & Wilkinson (1966) reported [RuCl2(PPh3)3], it has been found that such five-coordinated ruthenium(II) complex readily loses one triphenylphosphane ligand in solution to give a six-coordinated ruthenium(II) complex with a [Ru(PPh3)2] moiety (Caulton, 1974). For example, two isomers of [RuCl2(CH3CN)2(PPh3)2] were easily obtained upon refluxing [RuCl2(PPh3)3] in a mixed solution with acetonitrile as both co-solvent and ligand (Al-Far & Slaughter, 2008; Gilbert & Wilkinson, 1969), which were firstly characterized by infrared spectroscopy (Hallman et al., 1970) and later confirmed by X-ray crystallography (Al-Far & Slaughter, 2008). We found that a similar reaction of [RuCl2(PPh3)3] in the presence of equal equivalent of hydrogen peroxide resulted in loss of two triphenylphosphane ligands and coordination of three acetonitrile ligands. In this paper, we report the synthesis and crystal structure of a new ruthenium(II) complex [RuCl2(CH3CN)3(PPh3)].CH3CN with a [Ru(PPh3)] species.

In the title complex, the coordination geometry of the RuII atom is a distorted octahedral with one triphenylphosphane, three acetonitriles and two chlorides (Fig. 1). The average Ru—N bond distance value, 2.014 (2) Å, is similar to that found in cis-[RuCl2(CH3CN)2(PPh3)2] [av. 2.010 (2) Å] (Al-Far & Slaughter, 2008). The Ru—N bond distance of the CH3CN ligand trans to the chloride ligand is not extended (Jansen et al., 2000; Naskar & Bhattacharjee, 2005). Three CH3CN ligands are coordinated linearly to the RuII atom with average Ru—N—C and N—C—C angles of 174.6 (2)° and 177.3 (2)°, respectively. Average Ru—Cl bond distance [2.4542 (6) Å] is as expected (Al-Far & Slaughter, 2008; Jansen et al., 2000). The Ru—P bond length of 2.2754 (6) Å in the title complex is slightly shorter than those of 2.3688 (7) and 2.3887 (7) Å in the complex cis-[RuCl2(CH3CN)2(PPh3)2]. It is interesting to note that the Ru1—Cl2 bond [2.5007 (6) Å] trans to the PPh3 ligand is ca. 0.1 Å longer than the Ru1—Cl1 bond [2.4080 (6)Å] trans to the CH3CN ligand. The elongation of the Ru—Cl bond trans to the phosphane ligand is probably due to a relatively strong σ back-bonding from phosphrous to ruthenium.

Experimental

[RuCl2(PPh3)3] (191 mg, 0.2 mmol) was dissolved in a freshly distilled CH3CN (10 ml), with stirring at room temperature for 30 min. During this time, the color of the solution was changed from dark brown to orange. Hydrogen peroxide (30%, 6.8 ml, 0.2 mmol) was added to the solution and then the reaction mixture was stirred at reflux for 15 min, developing a yellow. The solvent was evaporated in vacuo and the yellow residue was washed with diethyl ether. Recrystallization from CH3CN/Et2O afforded yellow crystals of the title complex within five days. Yield: 127 mg, 69% (based on Ru). Analysis, calculated for C26H27Cl2N4PRu: C 52.18, H 4.55, N 9.36%; found C 52.13, H 4.51, N 9.39%.

Refinement

H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[RuCl2(C2H3N)3(C18H15P)]·C2H3N F(000) = 1216
Mr = 598.46 Dx = 1.439 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7259 reflections
a = 15.1133 (13) Å θ = 2.4–29.4°
b = 13.9144 (12) Å µ = 0.84 mm1
c = 13.3121 (12) Å T = 296 K
β = 99.275 (2)° Block, yellow
V = 2762.8 (4) Å3 0.15 × 0.13 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 5403 independent reflections
Radiation source: fine-focus sealed tube 4544 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→16
Tmin = 0.884, Tmax = 0.921 k = −17→17
16271 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0223P)2 + 1.1432P] where P = (Fo2 + 2Fc2)/3
5403 reflections (Δ/σ)max = 0.001
311 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.392694 (11) 0.357317 (12) 0.697216 (12) 0.02730 (6)
Cl1 0.34706 (4) 0.31895 (4) 0.52005 (4) 0.04156 (14)
Cl2 0.55085 (4) 0.30921 (4) 0.68935 (5) 0.04180 (14)
P1 0.25036 (4) 0.40373 (4) 0.70896 (4) 0.03124 (13)
N1 0.42461 (13) 0.49189 (14) 0.65831 (14) 0.0346 (4)
N2 0.36584 (12) 0.22009 (13) 0.72988 (14) 0.0329 (4)
N3 0.43047 (12) 0.37894 (12) 0.84685 (14) 0.0309 (4)
N4 0.0609 (3) 0.6282 (3) 0.1682 (4) 0.1235 (15)
C1 0.43654 (16) 0.56570 (17) 0.62675 (17) 0.0371 (5)
C2 0.4461 (2) 0.66014 (18) 0.5837 (2) 0.0536 (7)
H2A 0.3951 0.6733 0.5325 0.080*
H2B 0.4997 0.6620 0.5536 0.080*
H2C 0.4498 0.7077 0.6364 0.080*
C3 0.35075 (16) 0.14273 (17) 0.74815 (18) 0.0380 (5)
C4 0.3303 (2) 0.04378 (19) 0.7712 (2) 0.0600 (8)
H4A 0.3235 0.0388 0.8415 0.090*
H4B 0.3782 0.0027 0.7584 0.090*
H4C 0.2755 0.0245 0.7290 0.090*
C5 0.44268 (16) 0.38452 (16) 0.93285 (18) 0.0361 (5)
C6 0.4521 (2) 0.3943 (2) 1.04268 (18) 0.0560 (8)
H6A 0.3952 0.4108 1.0611 0.084*
H6B 0.4948 0.4439 1.0652 0.084*
H6C 0.4725 0.3346 1.0743 0.084*
C7 0.1151 (3) 0.6798 (3) 0.1963 (3) 0.0899 (12)
C8 0.1863 (4) 0.7457 (3) 0.2315 (4) 0.1292 (19)
H8A 0.2404 0.7104 0.2547 0.194*
H8B 0.1707 0.7832 0.2866 0.194*
H8C 0.1956 0.7875 0.1768 0.194*
C11 0.17380 (15) 0.30216 (17) 0.70816 (19) 0.0391 (5)
C12 0.12238 (18) 0.27311 (19) 0.6177 (2) 0.0520 (7)
H12 0.1214 0.3098 0.5591 0.062*
C13 0.0722 (2) 0.1892 (2) 0.6144 (3) 0.0728 (10)
H13 0.0376 0.1699 0.5536 0.087*
C14 0.0735 (2) 0.1349 (2) 0.7002 (4) 0.0794 (11)
H14 0.0389 0.0794 0.6978 0.095*
C15 0.1253 (2) 0.1616 (2) 0.7894 (3) 0.0686 (10)
H15 0.1267 0.1237 0.8472 0.082*
C16 0.17586 (18) 0.2451 (2) 0.7941 (2) 0.0516 (7)
H16 0.2113 0.2629 0.8550 0.062*
C21 0.23964 (16) 0.47418 (18) 0.82343 (18) 0.0399 (6)
C22 0.1735 (2) 0.4603 (2) 0.8828 (2) 0.0654 (9)
H22 0.1323 0.4106 0.8682 0.078*
C23 0.1694 (3) 0.5217 (3) 0.9650 (3) 0.0909 (13)
H23 0.1250 0.5127 1.0050 0.109*
C24 0.2298 (3) 0.5948 (3) 0.9876 (3) 0.0882 (12)
H24 0.2271 0.6343 1.0434 0.106*
C25 0.2941 (2) 0.6099 (2) 0.9282 (2) 0.0675 (9)
H25 0.3346 0.6603 0.9427 0.081*
C26 0.29900 (18) 0.55016 (19) 0.8468 (2) 0.0483 (6)
H26 0.3430 0.5609 0.8066 0.058*
C31 0.19006 (16) 0.48562 (16) 0.61322 (18) 0.0374 (5)
C32 0.22665 (18) 0.51600 (19) 0.53028 (19) 0.0466 (6)
H32 0.2819 0.4920 0.5198 0.056*
C33 0.1818 (2) 0.5820 (2) 0.4623 (2) 0.0635 (8)
H33 0.2071 0.6015 0.4064 0.076*
C34 0.1014 (2) 0.6185 (2) 0.4766 (3) 0.0709 (9)
H34 0.0721 0.6635 0.4314 0.085*
C35 0.0644 (2) 0.5885 (3) 0.5579 (3) 0.0785 (11)
H35 0.0090 0.6128 0.5675 0.094*
C36 0.10779 (19) 0.5228 (2) 0.6261 (2) 0.0609 (8)
H36 0.0815 0.5032 0.6813 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.03176 (10) 0.02563 (10) 0.02496 (10) 0.00084 (7) 0.00587 (7) 0.00132 (7)
Cl1 0.0517 (4) 0.0445 (3) 0.0275 (3) 0.0104 (3) 0.0035 (2) −0.0018 (2)
Cl2 0.0371 (3) 0.0440 (3) 0.0454 (3) 0.0047 (3) 0.0098 (3) 0.0021 (3)
P1 0.0319 (3) 0.0319 (3) 0.0300 (3) 0.0012 (2) 0.0053 (2) 0.0004 (2)
N1 0.0382 (11) 0.0327 (11) 0.0341 (10) 0.0009 (8) 0.0092 (8) 0.0015 (9)
N2 0.0377 (11) 0.0326 (11) 0.0291 (10) 0.0022 (8) 0.0074 (8) 0.0001 (8)
N3 0.0336 (10) 0.0278 (10) 0.0306 (10) −0.0005 (8) 0.0037 (8) 0.0012 (8)
N4 0.119 (3) 0.112 (3) 0.143 (4) −0.016 (3) 0.032 (3) −0.026 (3)
C1 0.0415 (13) 0.0381 (13) 0.0330 (12) −0.0016 (11) 0.0098 (10) −0.0002 (11)
C2 0.0728 (19) 0.0377 (14) 0.0508 (16) −0.0087 (13) 0.0116 (14) 0.0101 (12)
C3 0.0416 (13) 0.0354 (13) 0.0379 (13) 0.0009 (11) 0.0090 (10) −0.0009 (11)
C4 0.072 (2) 0.0343 (14) 0.076 (2) −0.0049 (14) 0.0177 (16) 0.0093 (14)
C5 0.0438 (14) 0.0269 (11) 0.0365 (14) −0.0040 (10) 0.0029 (10) 0.0004 (10)
C6 0.091 (2) 0.0459 (15) 0.0293 (13) −0.0197 (15) 0.0056 (13) −0.0005 (12)
C7 0.123 (4) 0.072 (3) 0.076 (3) 0.001 (3) 0.019 (3) −0.005 (2)
C8 0.182 (5) 0.092 (3) 0.104 (4) −0.038 (4) −0.009 (3) −0.002 (3)
C11 0.0309 (12) 0.0373 (13) 0.0499 (14) 0.0019 (10) 0.0092 (10) 0.0027 (11)
C12 0.0465 (15) 0.0428 (15) 0.0629 (18) 0.0015 (12) −0.0027 (13) −0.0038 (13)
C13 0.0510 (18) 0.0516 (18) 0.109 (3) −0.0075 (15) −0.0077 (18) −0.020 (2)
C14 0.055 (2) 0.0468 (18) 0.141 (4) −0.0130 (16) 0.031 (2) 0.000 (2)
C15 0.060 (2) 0.0530 (18) 0.101 (3) −0.0012 (15) 0.038 (2) 0.0203 (18)
C16 0.0469 (16) 0.0522 (16) 0.0596 (17) 0.0006 (13) 0.0198 (13) 0.0093 (14)
C21 0.0419 (14) 0.0425 (14) 0.0364 (13) 0.0090 (11) 0.0097 (10) −0.0020 (11)
C22 0.072 (2) 0.068 (2) 0.0646 (19) −0.0030 (17) 0.0352 (17) −0.0113 (16)
C23 0.119 (3) 0.095 (3) 0.075 (2) −0.002 (3) 0.065 (2) −0.021 (2)
C24 0.121 (3) 0.081 (3) 0.070 (2) 0.001 (2) 0.039 (2) −0.033 (2)
C25 0.081 (2) 0.0577 (18) 0.065 (2) 0.0018 (17) 0.0141 (17) −0.0229 (16)
C26 0.0512 (16) 0.0458 (15) 0.0493 (15) 0.0056 (12) 0.0127 (12) −0.0085 (12)
C31 0.0378 (13) 0.0335 (12) 0.0387 (13) 0.0056 (10) −0.0003 (10) 0.0023 (10)
C32 0.0465 (15) 0.0497 (15) 0.0435 (14) 0.0150 (12) 0.0067 (11) 0.0074 (12)
C33 0.073 (2) 0.069 (2) 0.0502 (17) 0.0246 (17) 0.0128 (15) 0.0207 (15)
C34 0.069 (2) 0.072 (2) 0.069 (2) 0.0335 (17) 0.0036 (17) 0.0239 (17)
C35 0.0556 (19) 0.097 (3) 0.084 (2) 0.0408 (19) 0.0133 (17) 0.023 (2)
C36 0.0456 (16) 0.074 (2) 0.0648 (19) 0.0170 (15) 0.0137 (14) 0.0158 (16)

Geometric parameters (Å, º)

Ru1—N1 2.0218 (19) C12—C13 1.389 (4)
Ru1—N2 2.0141 (19) C12—H12 0.9300
Ru1—N3 2.0044 (18) C13—C14 1.367 (5)
Ru1—P1 2.2754 (6) C13—H13 0.9300
Ru1—Cl1 2.4080 (6) C14—C15 1.365 (5)
Ru1—Cl2 2.5007 (6) C14—H14 0.9300
P1—C11 1.825 (2) C15—C16 1.386 (4)
P1—C31 1.838 (2) C15—H15 0.9300
P1—C21 1.841 (2) C16—H16 0.9300
N1—C1 1.135 (3) C21—C22 1.384 (3)
N2—C3 1.135 (3) C21—C26 1.389 (4)
N3—C5 1.133 (3) C22—C23 1.398 (4)
N4—C7 1.108 (5) C22—H22 0.9300
C1—C2 1.450 (3) C23—C24 1.368 (5)
C2—H2A 0.9600 C23—H23 0.9300
C2—H2B 0.9600 C24—C25 1.363 (5)
C2—H2C 0.9600 C24—H24 0.9300
C3—C4 1.455 (3) C25—C26 1.377 (4)
C4—H4A 0.9600 C25—H25 0.9300
C4—H4B 0.9600 C26—H26 0.9300
C4—H4C 0.9600 C31—C32 1.379 (3)
C5—C6 1.452 (3) C31—C36 1.383 (4)
C6—H6A 0.9600 C32—C33 1.387 (4)
C6—H6B 0.9600 C32—H32 0.9300
C6—H6C 0.9600 C33—C34 1.358 (4)
C7—C8 1.434 (6) C33—H33 0.9300
C8—H8A 0.9600 C34—C35 1.361 (5)
C8—H8B 0.9600 C34—H34 0.9300
C8—H8C 0.9600 C35—C36 1.379 (4)
C11—C12 1.384 (4) C35—H35 0.9300
C11—C16 1.389 (4) C36—H36 0.9300
N3—Ru1—N2 87.87 (7) C12—C11—P1 119.8 (2)
N3—Ru1—N1 94.25 (7) C16—C11—P1 120.5 (2)
N2—Ru1—N1 176.40 (7) C11—C12—C13 120.0 (3)
N3—Ru1—P1 90.58 (5) C11—C12—H12 120.0
N2—Ru1—P1 91.64 (5) C13—C12—H12 120.0
N1—Ru1—P1 91.26 (5) C14—C13—C12 120.3 (3)
N3—Ru1—Cl1 175.81 (5) C14—C13—H13 119.9
N2—Ru1—Cl1 88.02 (5) C12—C13—H13 119.9
N1—Ru1—Cl1 89.82 (6) C15—C14—C13 120.3 (3)
P1—Ru1—Cl1 90.31 (2) C15—C14—H14 119.8
N3—Ru1—Cl2 87.75 (5) C13—C14—H14 119.8
N2—Ru1—Cl2 89.00 (5) C14—C15—C16 120.2 (3)
N1—Ru1—Cl2 88.17 (5) C14—C15—H15 119.9
P1—Ru1—Cl2 178.19 (2) C16—C15—H15 119.9
Cl1—Ru1—Cl2 91.40 (2) C15—C16—C11 120.2 (3)
C11—P1—C31 103.47 (11) C15—C16—H16 119.9
C11—P1—C21 106.07 (11) C11—C16—H16 119.9
C31—P1—C21 98.27 (11) C22—C21—C26 118.6 (2)
C11—P1—Ru1 112.66 (8) C22—C21—P1 124.5 (2)
C31—P1—Ru1 119.79 (8) C26—C21—P1 116.80 (18)
C21—P1—Ru1 114.73 (8) C21—C22—C23 119.3 (3)
C1—N1—Ru1 172.6 (2) C21—C22—H22 120.4
C3—N2—Ru1 179.9 (2) C23—C22—H22 120.4
C5—N3—Ru1 171.40 (18) C24—C23—C22 120.9 (3)
N1—C1—C2 176.5 (3) C24—C23—H23 119.5
C1—C2—H2A 109.5 C22—C23—H23 119.5
C1—C2—H2B 109.5 C25—C24—C23 120.0 (3)
H2A—C2—H2B 109.5 C25—C24—H24 120.0
C1—C2—H2C 109.5 C23—C24—H24 120.0
H2A—C2—H2C 109.5 C24—C25—C26 119.8 (3)
H2B—C2—H2C 109.5 C24—C25—H25 120.1
N2—C3—C4 179.3 (3) C26—C25—H25 120.1
C3—C4—H4A 109.5 C25—C26—C21 121.4 (3)
C3—C4—H4B 109.5 C25—C26—H26 119.3
H4A—C4—H4B 109.5 C21—C26—H26 119.3
C3—C4—H4C 109.5 C32—C31—C36 118.0 (2)
H4A—C4—H4C 109.5 C32—C31—P1 121.83 (18)
H4B—C4—H4C 109.5 C36—C31—P1 120.1 (2)
N3—C5—C6 176.0 (3) C31—C32—C33 120.6 (2)
C5—C6—H6A 109.5 C31—C32—H32 119.7
C5—C6—H6B 109.5 C33—C32—H32 119.7
H6A—C6—H6B 109.5 C34—C33—C32 120.7 (3)
C5—C6—H6C 109.5 C34—C33—H33 119.7
H6A—C6—H6C 109.5 C32—C33—H33 119.7
H6B—C6—H6C 109.5 C33—C34—C35 119.2 (3)
N4—C7—C8 178.9 (6) C33—C34—H34 120.4
C7—C8—H8A 109.5 C35—C34—H34 120.4
C7—C8—H8B 109.5 C34—C35—C36 120.9 (3)
H8A—C8—H8B 109.5 C34—C35—H35 119.5
C7—C8—H8C 109.5 C36—C35—H35 119.5
H8A—C8—H8C 109.5 C35—C36—C31 120.5 (3)
H8B—C8—H8C 109.5 C35—C36—H36 119.7
C12—C11—C16 119.0 (2) C31—C36—H36 119.7

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2625).

References

  1. Al-Far, A. M. & Slaughter, L. M. (2008). Acta Cryst. E64, m184. [DOI] [PMC free article] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caulton, K. G. (1974). J. Am. Chem. Soc. 96, 3005–3006.
  4. Gilbert, J. D. & Wilkinson, G. (1969). J. Chem. Soc. A, pp. 1749–1753.
  5. Hallman, P. S., Stephenson, T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237–240.
  6. Jansen, A., Görls, H. & Pitter, S. (2000). Organometallics, 19, 135–138.
  7. Naskar, S. & Bhattacharjee, M. (2005). J. Organomet. Chem. 690, 5006–5010.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stephenson, T. A. & Wilkinson, G. (1966). J. Inorg. Nucl. Chem. 28, 945–956.
  11. Trost, B. M., Toste, F. D. & Prinkerton, A. B. (2001). Chem. Rev. 101, 2067–2096. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014128/hy2625sup1.cif

e-69-0m340-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014128/hy2625Isup2.hkl

e-69-0m340-Isup2.hkl (264.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES