Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 31;69(Pt 6):m351–m352. doi: 10.1107/S1600536813014578

Bis[μ-2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole-κ4 N 2,N 3:N 4,N 5]bis­[(nitrato-κO)silver(I)] tetra­hydrate

Abdelhakim Laachir a, Fouad Bentiss a,*, Salaheddine Guesmi a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC3684907  PMID: 23795009

Abstract

The self-assembly of an angular 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole ligand (L) with silver nitrate (AgNO3) produced a new dinuclear silver(I) coordination complex, [Ag2(C12H8N4S)2(NO3)2]·4H2O, which crystallizes with two Ag atoms bridged by two L ligands. The Ag atom is surrounded by four N atoms of L and by one O from the nitrate anion defining a distorted square pyramid. The atoms comprising the dication are nearly coplanar, with an r.m.s. deviation of 0.1997 Å. Mol­ecules are linked by C—H⋯O and O—H⋯O hydrogen bonds through nitrate anions and water mol­ecules, forming a two-dimensional porous network. The overall structure involves stacking of Ag complex layers along the b axis. The cohesion in the three-dimensional architecture is ensured by O⋯Ag inter­actions.

Related literature  

For the synthesis of the ligand, see: Lebrini et al. (2005). For background to coordination polymers, see: Brammer (2004); Ghosh et al. (2004); Maspoch et al. (2004). For complexes with the same ligand but with other metals and counter-anions, see: Bentiss et al. (2012); Niu et al. (2009).graphic file with name e-69-0m351-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2(C12H8N4S)2(NO3)2]·4H2O

  • M r = 892.41

  • Triclinic, Inline graphic

  • a = 5.4251 (1) Å

  • b = 10.6894 (3) Å

  • c = 14.5865 (3) Å

  • α = 108.910 (1)°

  • β = 91.447 (1)°

  • γ = 102.440 (1)°

  • V = 777.30 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 296 K

  • 0.42 × 0.32 × 0.23 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.739, T max = 0.867

  • 29938 measured reflections

  • 5388 independent reflections

  • 3919 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.090

  • S = 1.01

  • 5388 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.93 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2; data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014578/tk5229sup1.cif

e-69-0m351-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014578/tk5229Isup2.hkl

e-69-0m351-Isup2.hkl (258.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O5 0.86 2.08 2.777 (4) 138
O4—H4A⋯O4i 0.86 2.51 2.980 (9) 115
C1—H1⋯O2ii 0.93 2.44 3.342 (3) 164
C12—H12⋯O2iii 0.93 2.48 3.376 (4) 162
O5—H5A⋯O2iv 0.86 2.05 2.874 (3) 162
O5—H5A⋯O1iv 0.86 2.46 3.191 (3) 143
O5—H5B⋯O1v 0.86 1.99 2.851 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

The design and construction of novel coordination polymers are very important parts of crystal engineering not only for the purpose of generating functional materials (Maspoch et al., 2004) but also for their fascinating structures (Brammer, 2004). So far, the design and synthesis of new ligands with various coordinating modes, the exploration of synthetic methods to construct coordination polymers, and investigation on the effect of various factors upon architectures have greatly contributed to this field (Ghosh et al., 2004). The compound 2,5-bis(2-pyridyl)-1,3,4-thiadiazole was usually used as a bidentate ligand to form five-atom ring complexes and sometimes it coordinates two metal atoms by four nitrogen atoms as double-bidentate ligand. The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with Cu2+ (nitrate, perchlorate and trifluoromethanesulfonate) and Ag+ (SbF6-) have been previously reported (Bentiss et al., 2012; Niu et al., 2009). Recently, the study of the new di-nuclear silver(I) coordination complexes with 2,5-bis(2-pyridyl)-1,3,4-thiadiazole showed that the supramolecular structures of its silver complexes can change with the size of counter-anions of the same polyhedron (Niu et al., 2009). As a continuation of our work, in this contribution, we report here the synthesis and the single-crystal structure determination of the new dimeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (L) with silver nitrate as counter ions.

The asymmetric unit of the title compound, [2,5-bis(2-pyridyl)-1,3,4- thiadiazole]silver(I) nitrate, dihydrate is doubled by the application of a centre of inversion, resulting in a Ag2-containing dimeric complex. The structure shows the silver cation in a distorted square pyramid site formed by four nitrogen atoms belonging to one organic ligand and an O atom of a nitrate anion (Fig. 1). Each ligand molecule is build up by two six-membered rings linked through a five-membered ring. The two silver atoms and ligands are nearly coplanar, with a r.m.s. deviation of 0.1997 Å. The molecules are linked together by C–H···O and O–H···O hydrogen bonds through nitrate and water molecules, forming a two-dimensional porous network. The overall structure involves stacking of Ag complex layers nearly along the b axis. The cohesion in the crystal is ensured by O3–Ag1 interaction (Fig. 2 and Table 2).

Experimental

2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (L) was synthesized as described previously by Lebrini et al. (2005). AgNO3 (0.75 mmol, 0.13 g) in water (5 ml ) was added to L (0.21 mmol, 50 mg) dissolved in ethanol (13 ml). The resulting solution was stirred for 30 min. The solution was filtered and allowed to stand at ambient temperature. After seven days, yellow blocks crystallized. Crystals were washed with water and dried under vacuum (yield 34%). These crystals were used as isolated for single-crystal X-ray analysis. Anal. Calc. for C24H24Ag2N10O10S2. C, 37.60; H, 3.13; N, 18.28 S, 8.37; Found: C, 37.69; H, 3.17; N, 18.21; S, 8.34.

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic) and O—H = 0.86 Å (water) with Uiso(H) = 1.2 Ueq(aromatic) and Uiso(H) = 1.5 Ueq (water). The reflections (001), (01–1), (0–11) and (010) are removed from the refinement because they are affected by the beam stop.

Figures

Fig. 1.

Fig. 1.

Plot of the crystal structure showing the molecules linked to the silver cation, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x + 1, -y, -z; (ii) -x, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

Partial plot of the unit cell showing crystal packing. Hydrogen bonds are depicted as dashed lines. Symmetry codes: (c) -x, -y, -z + 1; (e) -x + 1, -y + 1, -z + 1; (h) -x, -y, -z.

Crystal data

[Ag2(C12H8N4S)2(NO3)2]·4H2O Z = 1
Mr = 892.41 F(000) = 444
Triclinic, P1 Dx = 1.906 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.4251 (1) Å Cell parameters from 29938 reflections
b = 10.6894 (3) Å θ = 2.9–32.0°
c = 14.5865 (3) Å µ = 1.47 mm1
α = 108.910 (1)° T = 296 K
β = 91.447 (1)° Block, colourless
γ = 102.440 (1)° 0.42 × 0.32 × 0.23 mm
V = 777.30 (3) Å3

Data collection

Bruker X8 APEX diffractometer 5388 independent reflections
Radiation source: fine-focus sealed tube 3919 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 32.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −8→8
Tmin = 0.739, Tmax = 0.867 k = −15→15
29938 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.5008P] where P = (Fo2 + 2Fc2)/3
5388 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.92 e Å3
0 restraints Δρmin = −0.93 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.88258 (4) 0.17155 (2) 0.082506 (13) 0.05506 (8)
S1 0.27700 (10) −0.00777 (6) 0.27138 (4) 0.03914 (12)
N1 0.9412 (3) 0.2260 (2) 0.25072 (14) 0.0399 (4)
N2 0.5007 (4) 0.0657 (2) 0.13988 (14) 0.0442 (4)
N3 0.2802 (4) −0.0253 (2) 0.09364 (14) 0.0435 (4)
N4 −0.1644 (4) −0.2195 (2) 0.02161 (14) 0.0415 (4)
C1 1.1468 (4) 0.3134 (3) 0.30566 (19) 0.0473 (5)
H1 1.2796 0.3477 0.2749 0.057*
C2 1.1710 (5) 0.3552 (3) 0.4058 (2) 0.0568 (7)
H2 1.3189 0.4151 0.4414 0.068*
C3 0.9763 (6) 0.3080 (3) 0.4524 (2) 0.0606 (7)
H3 0.9894 0.3350 0.5201 0.073*
C4 0.7590 (5) 0.2191 (3) 0.39710 (17) 0.0491 (6)
H4 0.6221 0.1863 0.4268 0.059*
C5 0.7497 (4) 0.1801 (2) 0.29698 (16) 0.0367 (4)
C6 0.5261 (4) 0.0856 (2) 0.23297 (15) 0.0358 (4)
C7 0.1435 (4) −0.0725 (2) 0.15227 (15) 0.0349 (4)
C8 −0.1038 (4) −0.1714 (2) 0.11867 (15) 0.0345 (4)
C9 −0.2607 (4) −0.2091 (3) 0.18250 (17) 0.0428 (5)
H9 −0.2114 −0.1748 0.2492 0.051*
C10 −0.4937 (5) −0.2991 (3) 0.1457 (2) 0.0476 (5)
H10 −0.6027 −0.3273 0.1871 0.057*
C11 −0.5609 (5) −0.3460 (3) 0.0472 (2) 0.0477 (5)
H11 −0.7186 −0.4042 0.0210 0.057*
C12 −0.3919 (5) −0.3058 (3) −0.01236 (18) 0.0476 (5)
H12 −0.4374 −0.3400 −0.0793 0.057*
O1 1.0220 (4) 0.6251 (2) 0.29332 (16) 0.0703 (6)
O2 0.6832 (4) 0.4674 (3) 0.2406 (2) 0.0785 (7)
O3 0.9959 (4) 0.4677 (2) 0.15475 (16) 0.0695 (6)
N5 0.9004 (4) 0.5189 (2) 0.22918 (16) 0.0474 (5)
O4 0.2764 (8) 0.0495 (3) 0.5333 (3) 0.1395 (14)
H4A 0.1511 0.0832 0.5559 0.209*
H4B 0.4079 0.1163 0.5542 0.209*
O5 0.4863 (4) 0.3278 (2) 0.61006 (16) 0.0730 (6)
H5A 0.4020 0.3769 0.6497 0.109*
H5B 0.6329 0.3453 0.6415 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.05582 (12) 0.06872 (16) 0.03379 (10) −0.00435 (9) 0.01077 (7) 0.01998 (9)
S1 0.0410 (3) 0.0453 (3) 0.0288 (2) 0.0034 (2) 0.00920 (19) 0.0134 (2)
N1 0.0394 (9) 0.0424 (11) 0.0376 (10) 0.0057 (8) 0.0089 (7) 0.0152 (8)
N2 0.0441 (10) 0.0516 (12) 0.0328 (9) −0.0017 (8) 0.0057 (7) 0.0170 (9)
N3 0.0451 (10) 0.0500 (12) 0.0312 (9) −0.0005 (8) 0.0055 (7) 0.0153 (8)
N4 0.0433 (9) 0.0430 (11) 0.0335 (9) 0.0051 (8) 0.0079 (7) 0.0096 (8)
C1 0.0407 (11) 0.0489 (14) 0.0491 (13) 0.0011 (10) 0.0063 (10) 0.0185 (11)
C2 0.0464 (13) 0.0549 (16) 0.0543 (15) −0.0029 (11) −0.0047 (11) 0.0091 (13)
C3 0.0604 (16) 0.073 (2) 0.0359 (13) 0.0036 (14) −0.0014 (11) 0.0101 (13)
C4 0.0462 (12) 0.0605 (16) 0.0370 (12) 0.0039 (11) 0.0085 (9) 0.0168 (11)
C5 0.0377 (10) 0.0376 (11) 0.0352 (10) 0.0076 (8) 0.0075 (8) 0.0135 (9)
C6 0.0377 (10) 0.0381 (11) 0.0335 (10) 0.0077 (8) 0.0104 (8) 0.0151 (9)
C7 0.0390 (10) 0.0364 (11) 0.0296 (9) 0.0094 (8) 0.0078 (7) 0.0110 (8)
C8 0.0378 (9) 0.0330 (11) 0.0331 (10) 0.0098 (8) 0.0078 (8) 0.0105 (8)
C9 0.0442 (11) 0.0481 (14) 0.0375 (11) 0.0081 (10) 0.0116 (9) 0.0176 (10)
C10 0.0427 (11) 0.0496 (14) 0.0540 (14) 0.0082 (10) 0.0157 (10) 0.0232 (12)
C11 0.0405 (11) 0.0409 (13) 0.0555 (15) 0.0031 (9) 0.0061 (10) 0.0124 (11)
C12 0.0474 (12) 0.0468 (14) 0.0387 (12) 0.0017 (10) 0.0030 (9) 0.0076 (10)
O1 0.0593 (12) 0.0748 (15) 0.0585 (12) 0.0083 (10) −0.0056 (10) 0.0037 (11)
O2 0.0413 (10) 0.0866 (16) 0.1001 (18) 0.0029 (10) 0.0200 (11) 0.0283 (14)
O3 0.0732 (13) 0.0715 (14) 0.0570 (12) 0.0109 (11) 0.0245 (10) 0.0152 (11)
N5 0.0367 (9) 0.0564 (13) 0.0502 (12) 0.0083 (9) 0.0025 (8) 0.0211 (10)
O4 0.169 (4) 0.077 (2) 0.154 (4) −0.004 (2) −0.004 (3) 0.037 (2)
O5 0.0582 (11) 0.0823 (16) 0.0599 (13) 0.0109 (11) 0.0061 (10) 0.0029 (11)

Geometric parameters (Å, º)

Ag1—N4i 2.2785 (19) C3—H3 0.9300
Ag1—N1 2.3273 (19) C4—C5 1.379 (3)
Ag1—N2 2.4421 (19) C4—H4 0.9300
Ag1—N3i 2.5519 (19) C5—C6 1.472 (3)
Ag1—O3 2.911 (2) C7—C8 1.476 (3)
S1—C6 1.719 (2) C8—C9 1.374 (3)
S1—C7 1.721 (2) C9—C10 1.386 (3)
N1—C1 1.334 (3) C9—H9 0.9300
N1—C5 1.343 (3) C10—C11 1.369 (4)
N2—C6 1.303 (3) C10—H10 0.9300
N2—N3 1.365 (3) C11—C12 1.376 (4)
N3—C7 1.299 (3) C11—H11 0.9300
N3—Ag1i 2.5519 (19) C12—H12 0.9300
N4—C12 1.342 (3) O1—N5 1.247 (3)
N4—C8 1.345 (3) O2—N5 1.229 (3)
N4—Ag1i 2.2785 (19) O3—N5 1.230 (3)
C1—C2 1.376 (4) O4—H4A 0.8601
C1—H1 0.9300 O4—H4B 0.8601
C2—C3 1.365 (4) O5—H5A 0.8601
C2—H2 0.9300 O5—H5B 0.8600
C3—C4 1.384 (4)
N4i—Ag1—N1 129.5 (1) C5—C4—H4 120.7
N4i—Ag1—N2 159.9 (1) C3—C4—H4 120.7
N1—Ag1—N2 70.1 (1) N1—C5—C4 122.9 (2)
N4i—Ag1—N3i 69.0 (1) N1—C5—C6 115.1 (2)
N1—Ag1—N3i 157.2 (1) C4—C5—C6 122.0 (2)
N2—Ag1—N3i 90.9 (1) N2—C6—C5 121.8 (2)
N4i—Ag1—O3 79.4 (1) N2—C6—S1 113.6 (2)
N1—Ag1—O3 76.6 (1) C5—C6—S1 124.6 (2)
N2—Ag1—O3 113.6 (1) N3—C7—C8 122.4 (2)
N3i—Ag1—O3 124.0 (1) N3—C7—S1 113.7 (2)
C6—S1—C7 87.2 (1) C8—C7—S1 123.9 (2)
C1—N1—C5 117.4 (2) N4—C8—C9 123.0 (2)
C1—N1—Ag1 123.0 (2) N4—C8—C7 114.9 (2)
C5—N1—Ag1 119.2 (2) C9—C8—C7 122.1 (2)
C6—N2—N3 112.7 (2) C8—C9—C10 118.7 (2)
C6—N2—Ag1 113.1 (2) C8—C9—H9 120.6
N3—N2—Ag1 133.5 (2) C10—C9—H9 120.6
C7—N3—N2 112.8 (2) C11—C10—C9 118.9 (2)
C7—N3—Ag1i 109.7 (2) C11—C10—H10 120.5
N2—N3—Ag1i 135.3 (2) C9—C10—H10 120.5
C12—N4—C8 117.2 (2) C10—C11—C12 119.1 (2)
C12—N4—Ag1i 120.8 (2) C10—C11—H11 120.5
C8—N4—Ag1i 121.8 (2) C12—C11—H11 120.5
N1—C1—C2 123.0 (2) N4—C12—C11 123.0 (2)
N1—C1—H1 118.5 N4—C12—H12 118.5
C2—C1—H1 118.5 C11—C12—H12 118.5
C3—C2—C1 119.4 (2) N5—O3—Ag1 115.4 (2)
C3—C2—H2 120.3 O2—N5—O3 120.5 (2)
C1—C2—H2 120.3 O2—N5—O1 119.2 (2)
C2—C3—C4 118.7 (3) O3—N5—O1 120.3 (2)
C2—C3—H3 120.6 H4A—O4—H4B 104.9
C4—C3—H3 120.6 H5A—O5—H5B 104.9
C5—C4—C3 118.6 (2)
N4i—Ag1—N1—C1 11.5 (2) Ag1—N2—C6—S1 −171.2 (1)
N2—Ag1—N1—C1 −173.9 (2) N1—C5—C6—N2 −10.6 (3)
N3i—Ag1—N1—C1 150.9 (2) C4—C5—C6—N2 168.9 (2)
O3—Ag1—N1—C1 −52.4 (2) N1—C5—C6—S1 169.5 (2)
N4i—Ag1—N1—C5 −176.3 (2) C4—C5—C6—S1 −11.0 (3)
N2—Ag1—N1—C5 −1.7 (2) C7—S1—C6—N2 −0.1 (2)
N3i—Ag1—N1—C5 −36.8 (3) C7—S1—C6—C5 179.8 (2)
O3—Ag1—N1—C5 119.8 (2) N2—N3—C7—C8 179.5 (2)
N4i—Ag1—N2—C6 164.0 (2) Ag1i—N3—C7—C8 −14.6 (3)
N1—Ag1—N2—C6 −3.8 (2) N2—N3—C7—S1 0.0 (3)
N3i—Ag1—N2—C6 163.3 (2) Ag1i—N3—C7—S1 165.9 (1)
O3—Ag1—N2—C6 −68.5 (2) C6—S1—C7—N3 0.1 (2)
N4i—Ag1—N2—N3 −4.9 (4) C6—S1—C7—C8 −179.5 (2)
N1—Ag1—N2—N3 −172.7 (2) C12—N4—C8—C9 1.4 (3)
N3i—Ag1—N2—N3 −5.6 (3) Ag1i—N4—C8—C9 −173.6 (2)
O3—Ag1—N2—N3 122.5 (2) C12—N4—C8—C7 −177.5 (2)
C6—N2—N3—C7 0.0 (3) Ag1i—N4—C8—C7 7.5 (3)
Ag1—N2—N3—C7 168.9 (2) N3—C7—C8—N4 6.5 (3)
C6—N2—N3—Ag1i −161.0 (2) S1—C7—C8—N4 −174.0 (2)
Ag1—N2—N3—Ag1i 8.0 (4) N3—C7—C8—C9 −172.4 (2)
C5—N1—C1—C2 1.4 (4) S1—C7—C8—C9 7.1 (3)
Ag1—N1—C1—C2 173.8 (2) N4—C8—C9—C10 −1.0 (4)
N1—C1—C2—C3 −1.2 (4) C7—C8—C9—C10 177.9 (2)
C1—C2—C3—C4 −0.1 (5) C8—C9—C10—C11 −0.9 (4)
C2—C3—C4—C5 1.0 (5) C9—C10—C11—C12 2.1 (4)
C1—N1—C5—C4 −0.4 (3) C8—N4—C12—C11 −0.1 (4)
Ag1—N1—C5—C4 −173.1 (2) Ag1i—N4—C12—C11 175.0 (2)
C1—N1—C5—C6 179.1 (2) C10—C11—C12—N4 −1.7 (4)
Ag1—N1—C5—C6 6.4 (3) N4i—Ag1—O3—N5 −174.6 (2)
C3—C4—C5—N1 −0.8 (4) N1—Ag1—O3—N5 −39.4 (2)
C3—C4—C5—C6 179.8 (2) N2—Ag1—O3—N5 21.6 (2)
N3—N2—C6—C5 −179.8 (2) N3i—Ag1—O3—N5 129.9 (2)
Ag1—N2—C6—C5 8.9 (3) Ag1—O3—N5—O2 −39.5 (3)
N3—N2—C6—S1 0.1 (3) Ag1—O3—N5—O1 141.5 (2)

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4B···O5 0.86 2.08 2.777 (4) 138
O4—H4A···O4ii 0.86 2.51 2.980 (9) 115
C1—H1···O2iii 0.93 2.44 3.342 (3) 164
C12—H12···O2iv 0.93 2.48 3.376 (4) 162
O5—H5A···O2v 0.86 2.05 2.874 (3) 162
O5—H5A···O1v 0.86 2.46 3.191 (3) 143
O5—H5B···O1vi 0.86 1.99 2.851 (3) 176

Symmetry codes: (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) −x, −y, −z; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5229).

References

  1. Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. [DOI] [PMC free article] [PubMed]
  2. Brammer, L. (2004). Chem. Soc. Rev. 33, 476–489.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497. [DOI] [PubMed]
  6. Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2004). J. Mater. Chem. 14, 2713–2723.
  9. Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373–1382.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014578/tk5229sup1.cif

e-69-0m351-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014578/tk5229Isup2.hkl

e-69-0m351-Isup2.hkl (258.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES