Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):o820. doi: 10.1107/S1600536813011793

2-(4-Fluoro­phen­yl)-5-iodo-7-methyl-3-phenyl­sulfinyl-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3684910  PMID: 23795012

Abstract

In the title compound, C21H14FIO2S, the dihedral angles between the mean plane [r.m.s. deviation = 0.007 (1) Å] of the benzo­furan fragment and the pendant 4-fluoro­phenyl and phenyl rings are 3.66 (7) and 82.37 (6)°, respectively. In the crystal, mol­ecules are linked by pairs of C—H⋯I hydrogen bonds into centrosymmetric dimers, which are further packed into stacks along the b axis by C—H⋯O hydrogen bonds. In addition, the stacked mol­ecules exhibit inversion-related S⋯O contacts [2.9627 (14) Å] involving the sulfinyl groups.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2009, 2012). For details of sulfin­yl–sulfinyl inter­actions, see: Choi et al. (2008) and for a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998).graphic file with name e-69-0o820-scheme1.jpg

Experimental  

Crystal data  

  • C21H14FIO2S

  • M r = 476.28

  • Triclinic, Inline graphic

  • a = 8.1060 (3) Å

  • b = 10.7771 (4) Å

  • c = 11.2639 (4) Å

  • α = 71.814 (2)°

  • β = 74.496 (2)°

  • γ = 79.038 (2)°

  • V = 894.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.19 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.562, T max = 0.746

  • 16292 measured reflections

  • 4404 independent reflections

  • 4125 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.062

  • S = 1.05

  • 4404 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011793/ld2102sup1.cif

e-69-0o820-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011793/ld2102Isup2.hkl

e-69-0o820-Isup2.hkl (215.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011793/ld2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.95 2.36 3.314 (3) 177
C17—H17⋯I1ii 0.95 2.97 3.705 (2) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

As a part of our continuing study of 5-iodo-3-phenylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2009) and 4-fluorophenyl (Choi et al., 2012) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 4-fluorophenyl and phenyl rings are 3.66 (7) and 82.37 (6)°, respectively. In the crystal structure (Fig. 2), molecules are linked by pairs of C—H···I hydrogen bonds into centrosymmetric dimers, which are further packed into stacks along the b axis by C—H···O hydrogen bonds (Table 1). In addition, the crystal packing (Fig. 2) exhibits a sulfinyl–sulfinyl interaction (Choi et al., 2008) interpreted as similar to a type-II carbonyl–carbonyl interaction (Allen et al., 1998), with S1···O2iii and O2..S1iii distance of 2.9627 (14) Å .

Experimental

3-Chloroperoxybenzoic acid (77%, 179 mg, 0.8 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5-iodo-7-methyl-3-phenylsulfanyl-1-benzofuran (322 mg, 0.7 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 473–474 K; Rf = 0.74 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H..I, C—H···O and S···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) - x + 2, - y, - z + 2; (iii) - x + 2, - y, - z + 1; (iv) x + 1, y, z.]

Crystal data

C21H14FIO2S Z = 2
Mr = 476.28 F(000) = 468
Triclinic, P1 Dx = 1.768 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1060 (3) Å Cell parameters from 6652 reflections
b = 10.7771 (4) Å θ = 2.6–28.4°
c = 11.2639 (4) Å µ = 1.93 mm1
α = 71.814 (2)° T = 173 K
β = 74.496 (2)° Block, colourless
γ = 79.038 (2)° 0.36 × 0.28 × 0.19 mm
V = 894.69 (6) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 4404 independent reflections
Radiation source: rotating anode 4125 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.036
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 2.0°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.562, Tmax = 0.746 l = −14→14
16292 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: difference Fourier map
wR(F2) = 0.062 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.4238P] where P = (Fo2 + 2Fc2)/3
4404 reflections (Δ/σ)max = 0.002
236 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 1.038283 (17) 0.207761 (13) 1.022854 (12) 0.03450 (6)
S1 0.88164 (6) 0.15272 (4) 0.52014 (4) 0.02267 (9)
F1 0.52793 (19) 0.62193 (14) 0.03604 (12) 0.0432 (3)
O1 0.76006 (17) 0.52135 (12) 0.54415 (12) 0.0240 (3)
O2 1.03200 (17) 0.08292 (13) 0.57680 (14) 0.0297 (3)
C1 0.8377 (2) 0.30667 (17) 0.55547 (17) 0.0219 (3)
C2 0.8726 (2) 0.32977 (17) 0.66597 (17) 0.0226 (3)
C3 0.9380 (2) 0.25313 (18) 0.77187 (18) 0.0256 (4)
H3 0.9754 0.1619 0.7836 0.031*
C4 0.9455 (2) 0.31737 (19) 0.85932 (18) 0.0263 (4)
C5 0.8945 (3) 0.45161 (19) 0.84379 (18) 0.0274 (4)
H5 0.9038 0.4903 0.9065 0.033*
C6 0.8304 (2) 0.52953 (18) 0.73849 (18) 0.0256 (4)
C7 0.8216 (2) 0.46343 (17) 0.65298 (17) 0.0232 (3)
C8 0.7708 (2) 0.42461 (17) 0.48521 (17) 0.0224 (3)
C9 0.7725 (3) 0.67397 (19) 0.7182 (2) 0.0336 (4)
H9A 0.7783 0.7163 0.6267 0.050*
H9B 0.8479 0.7132 0.7480 0.050*
H9C 0.6536 0.6868 0.7665 0.050*
C10 0.7072 (2) 0.47139 (17) 0.36758 (17) 0.0234 (3)
C11 0.7151 (3) 0.39187 (19) 0.28875 (19) 0.0285 (4)
H11 0.7626 0.3024 0.3120 0.034*
C12 0.6542 (3) 0.4420 (2) 0.17688 (19) 0.0313 (4)
H12 0.6595 0.3880 0.1233 0.038*
C13 0.5866 (3) 0.5714 (2) 0.14591 (18) 0.0305 (4)
C14 0.5757 (3) 0.6538 (2) 0.22019 (19) 0.0315 (4)
H14 0.5279 0.7431 0.1958 0.038*
C15 0.6363 (3) 0.60277 (19) 0.33112 (18) 0.0287 (4)
H15 0.6298 0.6580 0.3839 0.034*
C16 0.6935 (2) 0.08351 (17) 0.62724 (19) 0.0253 (4)
C17 0.7012 (3) 0.0107 (2) 0.7511 (2) 0.0351 (4)
H17 0.8053 −0.0028 0.7794 0.042*
C18 0.5561 (3) −0.0422 (2) 0.8336 (3) 0.0457 (6)
H18 0.5598 −0.0921 0.9191 0.055*
C19 0.4053 (3) −0.0223 (2) 0.7911 (3) 0.0484 (6)
H19 0.3053 −0.0579 0.8481 0.058*
C20 0.3990 (3) 0.0487 (3) 0.6670 (3) 0.0465 (6)
H20 0.2952 0.0611 0.6385 0.056*
C21 0.5442 (3) 0.1020 (2) 0.5834 (2) 0.0343 (4)
H21 0.5411 0.1505 0.4975 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.03624 (9) 0.04058 (9) 0.02868 (8) −0.00585 (6) −0.01368 (6) −0.00611 (6)
S1 0.0228 (2) 0.01980 (19) 0.0283 (2) 0.00242 (16) −0.00949 (17) −0.01045 (16)
F1 0.0501 (8) 0.0477 (7) 0.0309 (6) −0.0013 (6) −0.0206 (6) −0.0025 (5)
O1 0.0290 (7) 0.0186 (6) 0.0250 (6) −0.0013 (5) −0.0063 (5) −0.0078 (5)
O2 0.0234 (6) 0.0282 (7) 0.0422 (8) 0.0057 (5) −0.0148 (6) −0.0153 (6)
C1 0.0216 (8) 0.0206 (8) 0.0248 (8) −0.0013 (6) −0.0050 (7) −0.0091 (6)
C2 0.0213 (8) 0.0227 (8) 0.0259 (8) −0.0038 (6) −0.0048 (7) −0.0092 (7)
C3 0.0254 (9) 0.0249 (8) 0.0288 (9) −0.0039 (7) −0.0085 (7) −0.0077 (7)
C4 0.0248 (9) 0.0311 (9) 0.0241 (9) −0.0067 (7) −0.0074 (7) −0.0056 (7)
C5 0.0277 (9) 0.0314 (9) 0.0269 (9) −0.0091 (8) −0.0030 (7) −0.0126 (7)
C6 0.0275 (9) 0.0243 (8) 0.0264 (9) −0.0079 (7) −0.0016 (7) −0.0098 (7)
C7 0.0235 (8) 0.0226 (8) 0.0237 (8) −0.0042 (7) −0.0031 (7) −0.0076 (7)
C8 0.0218 (8) 0.0217 (8) 0.0246 (8) −0.0024 (6) −0.0025 (7) −0.0099 (7)
C9 0.0434 (12) 0.0249 (9) 0.0352 (10) −0.0051 (8) −0.0064 (9) −0.0135 (8)
C10 0.0221 (8) 0.0227 (8) 0.0237 (8) −0.0007 (7) −0.0031 (7) −0.0067 (7)
C11 0.0322 (10) 0.0255 (9) 0.0281 (9) 0.0015 (7) −0.0095 (8) −0.0083 (7)
C12 0.0342 (10) 0.0354 (10) 0.0260 (9) −0.0029 (8) −0.0076 (8) −0.0110 (8)
C13 0.0279 (9) 0.0365 (10) 0.0236 (9) −0.0027 (8) −0.0078 (8) −0.0022 (8)
C14 0.0312 (10) 0.0271 (9) 0.0303 (10) 0.0030 (8) −0.0073 (8) −0.0031 (8)
C15 0.0312 (10) 0.0255 (9) 0.0273 (9) 0.0001 (7) −0.0050 (8) −0.0076 (7)
C16 0.0244 (9) 0.0195 (8) 0.0358 (10) 0.0003 (7) −0.0100 (8) −0.0121 (7)
C17 0.0366 (11) 0.0256 (9) 0.0420 (12) −0.0042 (8) −0.0141 (9) −0.0031 (8)
C18 0.0474 (14) 0.0339 (11) 0.0486 (14) −0.0100 (10) −0.0034 (11) −0.0043 (10)
C19 0.0365 (12) 0.0406 (13) 0.0661 (17) −0.0133 (10) 0.0050 (12) −0.0207 (12)
C20 0.0274 (11) 0.0477 (13) 0.0755 (18) −0.0037 (9) −0.0134 (11) −0.0312 (13)
C21 0.0285 (10) 0.0350 (10) 0.0471 (12) 0.0010 (8) −0.0162 (9) −0.0186 (9)

Geometric parameters (Å, º)

I1—C4 2.0974 (19) C9—H9C 0.9800
S1—O2i 2.9627 (14) C10—C11 1.397 (3)
S1—O2 1.4920 (14) C10—C15 1.399 (3)
S1—C1 1.7748 (17) C11—C12 1.389 (3)
S1—C16 1.796 (2) C11—H11 0.9500
F1—C13 1.360 (2) C12—C13 1.369 (3)
O1—C7 1.368 (2) C12—H12 0.9500
O1—C8 1.379 (2) C13—C14 1.375 (3)
C1—C8 1.369 (2) C14—C15 1.379 (3)
C1—C2 1.449 (2) C14—H14 0.9500
C2—C7 1.393 (2) C15—H15 0.9500
C2—C3 1.394 (3) C16—C17 1.382 (3)
C3—C4 1.388 (3) C16—C21 1.383 (3)
C3—H3 0.9500 C17—C18 1.383 (3)
C4—C5 1.396 (3) C17—H17 0.9500
C5—C6 1.387 (3) C18—C19 1.385 (4)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.387 (2) C19—C20 1.378 (4)
C6—C9 1.501 (3) C19—H19 0.9500
C8—C10 1.458 (3) C20—C21 1.390 (3)
C9—H9A 0.9800 C20—H20 0.9500
C9—H9B 0.9800 C21—H21 0.9500
O2—S1—C1 105.04 (8) C11—C10—C15 118.34 (17)
O2—S1—C16 106.95 (9) C11—C10—C8 123.24 (16)
C1—S1—C16 97.02 (8) C15—C10—C8 118.41 (16)
O2—S1—O2i 78.36 (6) C12—C11—C10 120.83 (18)
C1—S1—O2i 172.01 (7) C12—C11—H11 119.6
C16—S1—O2i 88.76 (6) C10—C11—H11 119.6
C7—O1—C8 107.21 (13) C13—C12—C11 118.25 (19)
C8—C1—C2 107.21 (15) C13—C12—H12 120.9
C8—C1—S1 127.99 (14) C11—C12—H12 120.9
C2—C1—S1 124.78 (13) F1—C13—C12 118.80 (19)
C7—C2—C3 119.35 (17) F1—C13—C14 117.99 (18)
C7—C2—C1 104.84 (16) C12—C13—C14 123.21 (19)
C3—C2—C1 135.81 (17) C13—C14—C15 117.99 (18)
C4—C3—C2 116.34 (17) C13—C14—H14 121.0
C4—C3—H3 121.8 C15—C14—H14 121.0
C2—C3—H3 121.8 C14—C15—C10 121.38 (18)
C3—C4—C5 123.24 (18) C14—C15—H15 119.3
C3—C4—I1 118.53 (14) C10—C15—H15 119.3
C5—C4—I1 118.23 (14) C17—C16—C21 121.16 (19)
C6—C5—C4 121.18 (17) C17—C16—S1 119.54 (15)
C6—C5—H5 119.4 C21—C16—S1 119.29 (16)
C4—C5—H5 119.4 C16—C17—C18 119.5 (2)
C5—C6—C7 114.83 (17) C16—C17—H17 120.3
C5—C6—C9 123.14 (17) C18—C17—H17 120.3
C7—C6—C9 122.02 (18) C17—C18—C19 119.7 (2)
O1—C7—C6 124.22 (16) C17—C18—H18 120.1
O1—C7—C2 110.72 (15) C19—C18—H18 120.1
C6—C7—C2 125.06 (18) C20—C19—C18 120.6 (2)
C1—C8—O1 110.02 (16) C20—C19—H19 119.7
C1—C8—C10 136.31 (16) C18—C19—H19 119.7
O1—C8—C10 113.67 (15) C19—C20—C21 120.1 (2)
C6—C9—H9A 109.5 C19—C20—H20 120.0
C6—C9—H9B 109.5 C21—C20—H20 120.0
H9A—C9—H9B 109.5 C16—C21—C20 119.0 (2)
C6—C9—H9C 109.5 C16—C21—H21 120.5
H9A—C9—H9C 109.5 C20—C21—H21 120.5
H9B—C9—H9C 109.5
O2—S1—C1—C8 149.12 (17) S1—C1—C8—C10 2.6 (3)
C16—S1—C1—C8 −101.17 (18) C7—O1—C8—C1 0.17 (19)
O2—S1—C1—C2 −28.97 (18) C7—O1—C8—C10 179.24 (15)
C16—S1—C1—C2 80.74 (17) C1—C8—C10—C11 −5.0 (3)
C8—C1—C2—C7 0.3 (2) O1—C8—C10—C11 176.23 (17)
S1—C1—C2—C7 178.71 (13) C1—C8—C10—C15 175.6 (2)
C8—C1—C2—C3 179.5 (2) O1—C8—C10—C15 −3.1 (2)
S1—C1—C2—C3 −2.1 (3) C15—C10—C11—C12 0.1 (3)
C7—C2—C3—C4 0.8 (3) C8—C10—C11—C12 −179.26 (18)
C1—C2—C3—C4 −178.3 (2) C10—C11—C12—C13 0.1 (3)
C2—C3—C4—C5 −1.2 (3) C11—C12—C13—F1 179.46 (18)
C2—C3—C4—I1 178.91 (13) C11—C12—C13—C14 −0.1 (3)
C3—C4—C5—C6 0.7 (3) F1—C13—C14—C15 −179.55 (18)
I1—C4—C5—C6 −179.40 (14) C12—C13—C14—C15 0.0 (3)
C4—C5—C6—C7 0.2 (3) C13—C14—C15—C10 0.1 (3)
C4—C5—C6—C9 179.44 (18) C11—C10—C15—C14 −0.2 (3)
C8—O1—C7—C6 −179.63 (17) C8—C10—C15—C14 179.19 (18)
C8—O1—C7—C2 0.02 (19) O2—S1—C16—C17 16.79 (18)
C5—C6—C7—O1 178.99 (16) C1—S1—C16—C17 −91.31 (16)
C9—C6—C7—O1 −0.2 (3) O2—S1—C16—C21 −162.03 (15)
C5—C6—C7—C2 −0.6 (3) C1—S1—C16—C21 89.87 (16)
C9—C6—C7—C2 −179.84 (18) C21—C16—C17—C18 −1.4 (3)
C3—C2—C7—O1 −179.54 (16) S1—C16—C17—C18 179.85 (17)
C1—C2—C7—O1 −0.2 (2) C16—C17—C18—C19 0.3 (3)
C3—C2—C7—C6 0.1 (3) C17—C18—C19—C20 0.7 (4)
C1—C2—C7—C6 179.46 (17) C18—C19—C20—C21 −0.6 (4)
C2—C1—C8—O1 −0.3 (2) C17—C16—C21—C20 1.5 (3)
S1—C1—C8—O1 −178.64 (13) S1—C16—C21—C20 −179.72 (16)
C2—C1—C8—C10 −179.0 (2) C19—C20—C21—C16 −0.5 (3)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···O2ii 0.95 2.36 3.314 (3) 177
C17—H17···I1iii 0.95 2.97 3.705 (2) 135

Symmetry codes: (ii) x−1, y, z; (iii) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2102).

References

  1. Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1237. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1061. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1809. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011793/ld2102sup1.cif

e-69-0o820-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011793/ld2102Isup2.hkl

e-69-0o820-Isup2.hkl (215.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011793/ld2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES