Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):o822. doi: 10.1107/S1600536813011525

Ethyl 1′′-benzyl-1′-methyl-2′′-oxodi­spiro­[indeno­[1,2-b]quinoxaline-11,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

Piskala Subburaman Kannan a, Srinu Lanka b, Sathiah Thennarasu b, Elumalai Govindan c, Arunachalathevar SubbiahPandi c,*
PMCID: PMC3684912  PMID: 23795014

Abstract

In the title compound, C36H30N4O3, the quinoxaline–indene system is roughly planar, with a maximum deviation from the mean plane of 0.218 Å for the C atom shared with the central pyrrolidine ring. This latter ring forms dihedral angles of 84.54 (7) and 83.91 (8)° with the quinoxaline–indene system and the indole ring, respectively. The central pyrrolidine ring has an envelope conformation with the N atom as the flap, while the pyrrolidine and five-membered rings of the indole group adopt twisted conformation and envelope (with the C atom bearing the quinoxaline–indene system as the flap) conformations, respectively. In the crystal, mol­ecules are linked via weak C—H⋯N hydrogen bonds, forming a chain running along [100].

Related literature  

For details of the synthesis, see: Azizian et al. (2005). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Srinivasan et al. (2012). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-69-0o822-scheme1.jpg

Experimental  

Crystal data  

  • C36H30N4O3

  • M r = 566.64

  • Triclinic, Inline graphic

  • a = 11.1927 (2) Å

  • b = 11.4535 (3) Å

  • c = 12.1206 (3) Å

  • α = 87.637 (2)°

  • β = 86.048 (1)°

  • γ = 70.564 (2)°

  • V = 1461.50 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.971, T max = 0.980

  • 21785 measured reflections

  • 5987 independent reflections

  • 4956 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.134

  • S = 1.04

  • 5987 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011525/bg2503sup1.cif

e-69-0o822-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011525/bg2503Isup2.hkl

e-69-0o822-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯N4i 0.93 2.60 3.446 (2) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives may show antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of interest due to their potential medicinal properties, we have undertaken the study of the three dimensional structure of the title compound C36H30N4O3, (I).

Fig 1 presents a molecular view of (I). The quinoxaline-indene system C1-C15/N1-N2), is essentially planar, with maximum deviation from the mean plane of 0.218Å for atom C15.

The central pyrrolidine ring (N4/C15-C16/C34-C35) forms dihedral angles of 84.54 (7) and 83.91 (8)° with the quinoxaline-indene and the (C16-C23/N3 indole groups, respectively. The central pyrrolidine ring is enveloped on N4 with puckering parameters q2 = 0.4000 (2) Å, φ = 359.20 (2)° (Cremer & Pople, 1975). The pyrrolidine in the indole group adopts a twisted conformation on C17-C16 with puckering parameters of q2 = 0.1265 (2) Å, φ = 51.90 (7)°, while the (C7-C9/C14-C15) five membered ring envelopes on C15 with puckering parameters q2 = 0.1135 (2) Å, φ = 322.40 (8)°.

In the crystal packing, molecules are linked via weak C-H···N intermolecular hydrogen bonds (Table 1) to form chains along [100], as shown in Fig.2.

Experimental

A mixture of benzyl Isatin(0.25 mmol), sarcosine(0.3 mmol), ethyl indeno[1,2-b]quinoxalin-11-ylideneacetate(0.25 mmol) in ethanol was refluxed for 60 min (Azizian et al., 2005). The progress of the reaction was followed by TLC. After completion, the solvent was removed under reduced pressure and the resulting crude product was subjected to column chromatography. The product was recrystallised from methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing viewed of the structure, projected down the c axis, showing the way in which the [100] chains are formed. Dashed lines represent the intermolecular C—H···N hydrogen bonds.

Crystal data

C36H30N4O3 Z = 2
Mr = 566.64 F(000) = 596
Triclinic, P1 Dx = 1.288 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.1927 (2) Å Cell parameters from 5987 reflections
b = 11.4535 (3) Å θ = 1.7–26.4°
c = 12.1206 (3) Å µ = 0.08 mm1
α = 87.637 (2)° T = 293 K
β = 86.048 (1)° Block, colourless
γ = 70.564 (2)° 0.35 × 0.30 × 0.25 mm
V = 1461.50 (6) Å3

Data collection

Bruker APEXII CCD area detector diffractometer 5987 independent reflections
Radiation source: fine-focus sealed tube 4956 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.971, Tmax = 0.980 k = −14→14
21785 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.3957P] where P = (Fo2 + 2Fc2)/3
5987 reflections (Δ/σ)max < 0.001
388 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.46495 (16) 0.33734 (15) 0.47540 (12) 0.0467 (4)
C2 0.58578 (19) 0.2802 (2) 0.51621 (16) 0.0655 (5)
H2 0.6504 0.2270 0.4717 0.079*
C3 0.6081 (2) 0.3030 (2) 0.62131 (18) 0.0796 (6)
H3 0.6886 0.2662 0.6475 0.096*
C4 0.5112 (2) 0.3814 (2) 0.69003 (17) 0.0813 (7)
H4 0.5276 0.3952 0.7617 0.098*
C5 0.3943 (2) 0.4369 (2) 0.65289 (15) 0.0716 (6)
H5 0.3306 0.4882 0.6994 0.086*
C6 0.36772 (17) 0.41794 (15) 0.54397 (13) 0.0505 (4)
C7 0.32937 (13) 0.36757 (13) 0.33956 (11) 0.0355 (3)
C8 0.23311 (15) 0.45322 (13) 0.40719 (11) 0.0401 (3)
C9 0.12264 (14) 0.50836 (13) 0.34192 (12) 0.0416 (3)
C10 0.00864 (17) 0.59934 (16) 0.36960 (14) 0.0573 (4)
H10 −0.0093 0.6301 0.4409 0.069*
C11 −0.07808 (18) 0.64365 (17) 0.28945 (16) 0.0629 (5)
H11 −0.1557 0.7039 0.3070 0.076*
C12 −0.05019 (17) 0.59895 (16) 0.18324 (15) 0.0549 (4)
H12 −0.1084 0.6315 0.1295 0.066*
C13 0.06289 (15) 0.50652 (14) 0.15560 (13) 0.0451 (3)
H13 0.0803 0.4767 0.0840 0.054*
C14 0.15026 (13) 0.45856 (12) 0.23576 (11) 0.0373 (3)
C15 0.27707 (13) 0.35239 (12) 0.23015 (11) 0.0345 (3)
C16 0.25846 (13) 0.21964 (13) 0.22938 (11) 0.0362 (3)
C17 0.13440 (14) 0.23436 (13) 0.17136 (12) 0.0396 (3)
C18 0.22998 (15) 0.16963 (13) 0.34140 (11) 0.0398 (3)
C19 0.30797 (18) 0.11634 (15) 0.42594 (13) 0.0519 (4)
H19 0.3939 0.1070 0.4190 0.062*
C20 0.2559 (2) 0.07688 (18) 0.52142 (15) 0.0671 (5)
H20 0.3072 0.0415 0.5794 0.081*
C21 0.1297 (2) 0.08966 (19) 0.53107 (15) 0.0697 (6)
H21 0.0964 0.0642 0.5965 0.084*
C22 0.0499 (2) 0.13956 (17) 0.44591 (15) 0.0597 (5)
H22 −0.0355 0.1465 0.4524 0.072*
C23 0.10286 (15) 0.17842 (13) 0.35109 (12) 0.0430 (3)
C24 −0.08781 (15) 0.25705 (16) 0.23371 (16) 0.0538 (4)
H24A −0.1076 0.3166 0.1727 0.065*
H24B −0.1353 0.2980 0.2993 0.065*
C25 −0.13298 (14) 0.15082 (14) 0.20920 (12) 0.0429 (3)
C26 −0.25876 (15) 0.16256 (17) 0.23242 (13) 0.0505 (4)
H26 −0.3132 0.2341 0.2656 0.061*
C27 −0.30515 (17) 0.0699 (2) 0.20724 (15) 0.0612 (5)
H27 −0.3901 0.0790 0.2237 0.073*
C28 −0.2258 (2) −0.0355 (2) 0.15803 (16) 0.0653 (5)
H28 −0.2569 −0.0980 0.1409 0.078*
C29 −0.1006 (2) −0.04890 (18) 0.13409 (17) 0.0645 (5)
H29 −0.0470 −0.1204 0.1004 0.077*
C30 −0.05354 (16) 0.04371 (16) 0.15982 (15) 0.0551 (4)
H30 0.0317 0.0338 0.1439 0.066*
C31 0.2604 (3) 0.7740 (2) 0.0863 (2) 0.0978 (8)
H31A 0.2272 0.8468 0.0407 0.147*
H31B 0.3403 0.7718 0.1123 0.147*
H31C 0.2018 0.7759 0.1484 0.147*
C32 0.2783 (3) 0.6663 (2) 0.02305 (18) 0.0802 (7)
H32A 0.3364 0.6647 −0.0405 0.096*
H32B 0.1979 0.6682 −0.0036 0.096*
C33 0.33704 (16) 0.44973 (16) 0.04707 (12) 0.0481 (4)
C34 0.37562 (14) 0.34434 (14) 0.12994 (11) 0.0402 (3)
H34 0.4544 0.3451 0.1601 0.048*
C35 0.40247 (16) 0.21799 (15) 0.08010 (13) 0.0488 (4)
H35A 0.3479 0.2227 0.0201 0.059*
H35B 0.4903 0.1840 0.0526 0.059*
C36 0.37646 (19) 0.02159 (16) 0.14274 (16) 0.0613 (5)
H36A 0.4566 −0.0218 0.1055 0.092*
H36B 0.3094 0.0299 0.0946 0.092*
H36C 0.3645 −0.0239 0.2084 0.092*
N1 0.44398 (12) 0.31244 (12) 0.36901 (10) 0.0431 (3)
N2 0.24881 (14) 0.47965 (13) 0.50795 (11) 0.0516 (3)
N3 0.04620 (12) 0.22332 (12) 0.25098 (11) 0.0445 (3)
N4 0.37489 (12) 0.14388 (11) 0.17259 (10) 0.0438 (3)
O1 0.11649 (12) 0.25347 (11) 0.07356 (9) 0.0526 (3)
O2 0.32960 (13) 0.55571 (11) 0.09209 (9) 0.0587 (3)
O3 0.31436 (17) 0.44125 (14) −0.04700 (10) 0.0807 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0535 (9) 0.0549 (9) 0.0381 (8) −0.0249 (7) −0.0133 (7) 0.0024 (7)
C2 0.0579 (11) 0.0865 (14) 0.0518 (10) −0.0209 (10) −0.0190 (8) 0.0026 (9)
C3 0.0773 (14) 0.1032 (17) 0.0632 (12) −0.0309 (13) −0.0386 (11) 0.0092 (12)
C4 0.1098 (18) 0.0864 (15) 0.0518 (11) −0.0305 (13) −0.0403 (12) −0.0051 (10)
C5 0.0979 (16) 0.0701 (12) 0.0437 (10) −0.0186 (11) −0.0255 (10) −0.0102 (9)
C6 0.0674 (11) 0.0508 (9) 0.0373 (8) −0.0222 (8) −0.0147 (7) −0.0029 (7)
C7 0.0425 (8) 0.0384 (7) 0.0302 (6) −0.0190 (6) −0.0046 (5) −0.0007 (5)
C8 0.0500 (8) 0.0402 (7) 0.0325 (7) −0.0174 (6) −0.0038 (6) −0.0039 (6)
C9 0.0474 (8) 0.0398 (7) 0.0374 (7) −0.0137 (6) −0.0045 (6) −0.0018 (6)
C10 0.0597 (11) 0.0547 (10) 0.0469 (9) −0.0041 (8) −0.0011 (8) −0.0097 (7)
C11 0.0549 (10) 0.0562 (10) 0.0630 (11) 0.0021 (8) −0.0072 (8) −0.0030 (8)
C12 0.0526 (10) 0.0512 (9) 0.0565 (10) −0.0093 (7) −0.0183 (8) 0.0064 (7)
C13 0.0514 (9) 0.0459 (8) 0.0395 (8) −0.0168 (7) −0.0114 (7) 0.0018 (6)
C14 0.0423 (8) 0.0365 (7) 0.0356 (7) −0.0159 (6) −0.0051 (6) 0.0000 (5)
C15 0.0395 (7) 0.0383 (7) 0.0287 (6) −0.0162 (6) −0.0047 (5) −0.0007 (5)
C16 0.0428 (8) 0.0379 (7) 0.0303 (6) −0.0160 (6) −0.0054 (6) −0.0017 (5)
C17 0.0481 (8) 0.0393 (7) 0.0363 (7) −0.0196 (6) −0.0082 (6) −0.0029 (6)
C18 0.0526 (9) 0.0355 (7) 0.0348 (7) −0.0188 (6) −0.0050 (6) −0.0007 (5)
C19 0.0680 (11) 0.0472 (8) 0.0447 (9) −0.0231 (8) −0.0167 (8) 0.0081 (7)
C20 0.1049 (17) 0.0611 (11) 0.0441 (9) −0.0379 (11) −0.0202 (10) 0.0159 (8)
C21 0.1144 (18) 0.0666 (12) 0.0388 (9) −0.0469 (12) 0.0051 (10) 0.0062 (8)
C22 0.0739 (12) 0.0631 (11) 0.0516 (10) −0.0381 (9) 0.0122 (9) −0.0067 (8)
C23 0.0560 (9) 0.0389 (7) 0.0383 (8) −0.0212 (7) −0.0004 (6) −0.0047 (6)
C24 0.0418 (9) 0.0488 (9) 0.0697 (11) −0.0120 (7) −0.0065 (8) −0.0077 (8)
C25 0.0386 (8) 0.0508 (8) 0.0404 (8) −0.0163 (6) −0.0052 (6) 0.0018 (6)
C26 0.0395 (8) 0.0666 (10) 0.0439 (8) −0.0163 (7) −0.0052 (6) 0.0082 (7)
C27 0.0486 (10) 0.0891 (14) 0.0572 (10) −0.0384 (10) −0.0167 (8) 0.0245 (10)
C28 0.0812 (14) 0.0735 (12) 0.0610 (11) −0.0502 (11) −0.0256 (10) 0.0169 (10)
C29 0.0744 (13) 0.0559 (10) 0.0683 (12) −0.0273 (9) −0.0049 (10) −0.0083 (9)
C30 0.0450 (9) 0.0555 (9) 0.0671 (11) −0.0199 (7) 0.0023 (8) −0.0081 (8)
C31 0.139 (2) 0.0601 (13) 0.0865 (17) −0.0203 (14) −0.0283 (16) 0.0143 (12)
C32 0.124 (2) 0.0633 (12) 0.0583 (12) −0.0387 (13) −0.0150 (12) 0.0239 (10)
C33 0.0567 (10) 0.0596 (9) 0.0328 (7) −0.0262 (8) −0.0013 (6) 0.0016 (7)
C34 0.0431 (8) 0.0499 (8) 0.0313 (7) −0.0204 (6) −0.0014 (6) −0.0024 (6)
C35 0.0544 (9) 0.0547 (9) 0.0387 (8) −0.0206 (7) 0.0062 (7) −0.0096 (7)
C36 0.0738 (12) 0.0445 (9) 0.0654 (11) −0.0188 (8) 0.0016 (9) −0.0164 (8)
N1 0.0431 (7) 0.0525 (7) 0.0361 (6) −0.0181 (6) −0.0076 (5) −0.0014 (5)
N2 0.0643 (9) 0.0524 (8) 0.0358 (7) −0.0144 (7) −0.0091 (6) −0.0082 (6)
N3 0.0431 (7) 0.0494 (7) 0.0458 (7) −0.0210 (6) −0.0059 (5) −0.0015 (5)
N4 0.0477 (7) 0.0404 (6) 0.0431 (7) −0.0139 (5) 0.0012 (5) −0.0092 (5)
O1 0.0673 (7) 0.0607 (7) 0.0368 (6) −0.0282 (6) −0.0168 (5) 0.0008 (5)
O2 0.0900 (9) 0.0532 (7) 0.0422 (6) −0.0356 (6) −0.0133 (6) 0.0103 (5)
O3 0.1283 (13) 0.0852 (10) 0.0349 (6) −0.0421 (9) −0.0181 (7) 0.0060 (6)

Geometric parameters (Å, º)

C1—N1 1.3842 (19) C20—H20 0.9300
C1—C2 1.407 (2) C21—C22 1.388 (3)
C1—C6 1.413 (2) C21—H21 0.9300
C2—C3 1.367 (3) C22—C23 1.382 (2)
C2—H2 0.9300 C22—H22 0.9300
C3—C4 1.402 (3) C23—N3 1.406 (2)
C3—H3 0.9300 C24—N3 1.447 (2)
C4—C5 1.351 (3) C24—C25 1.511 (2)
C4—H4 0.9300 C24—H24A 0.9700
C5—C6 1.414 (2) C24—H24B 0.9700
C5—H5 0.9300 C25—C26 1.379 (2)
C6—N2 1.375 (2) C25—C30 1.384 (2)
C7—N1 1.2950 (19) C26—C27 1.380 (3)
C7—C8 1.427 (2) C26—H26 0.9300
C7—C15 1.5249 (17) C27—C28 1.370 (3)
C8—N2 1.3075 (18) C27—H27 0.9300
C8—C9 1.459 (2) C28—C29 1.369 (3)
C9—C10 1.383 (2) C28—H28 0.9300
C9—C14 1.402 (2) C29—C30 1.387 (2)
C10—C11 1.380 (3) C29—H29 0.9300
C10—H10 0.9300 C30—H30 0.9300
C11—C12 1.382 (3) C31—C32 1.430 (3)
C11—H11 0.9300 C31—H31A 0.9600
C12—C13 1.383 (2) C31—H31B 0.9600
C12—H12 0.9300 C31—H31C 0.9600
C13—C14 1.390 (2) C32—O2 1.459 (2)
C13—H13 0.9300 C32—H32A 0.9700
C14—C15 1.5306 (19) C32—H32B 0.9700
C15—C34 1.5677 (19) C33—O3 1.1997 (19)
C15—C16 1.6023 (18) C33—O2 1.326 (2)
C16—N4 1.4485 (19) C33—C34 1.505 (2)
C16—C18 1.5069 (19) C34—C35 1.519 (2)
C16—C17 1.5556 (19) C34—H34 0.9800
C17—O1 1.2146 (17) C35—N4 1.456 (2)
C17—N3 1.3651 (19) C35—H35A 0.9700
C18—C19 1.379 (2) C35—H35B 0.9700
C18—C23 1.390 (2) C36—N4 1.455 (2)
C19—C20 1.386 (3) C36—H36A 0.9600
C19—H19 0.9300 C36—H36B 0.9600
C20—C21 1.369 (3) C36—H36C 0.9600
N1—C1—C2 119.04 (16) C21—C22—H22 121.4
N1—C1—C6 121.56 (14) C22—C23—C18 121.71 (15)
C2—C1—C6 119.40 (15) C22—C23—N3 128.49 (16)
C3—C2—C1 119.9 (2) C18—C23—N3 109.68 (13)
C3—C2—H2 120.0 N3—C24—C25 115.36 (13)
C1—C2—H2 120.0 N3—C24—H24A 108.4
C2—C3—C4 120.76 (19) C25—C24—H24A 108.4
C2—C3—H3 119.6 N3—C24—H24B 108.4
C4—C3—H3 119.6 C25—C24—H24B 108.4
C5—C4—C3 120.43 (17) H24A—C24—H24B 107.5
C5—C4—H4 119.8 C26—C25—C30 118.58 (15)
C3—C4—H4 119.8 C26—C25—C24 119.15 (15)
C4—C5—C6 120.7 (2) C30—C25—C24 122.21 (14)
C4—C5—H5 119.7 C25—C26—C27 121.06 (17)
C6—C5—H5 119.7 C25—C26—H26 119.5
N2—C6—C1 122.27 (13) C27—C26—H26 119.5
N2—C6—C5 118.93 (17) C28—C27—C26 119.89 (16)
C1—C6—C5 118.79 (16) C28—C27—H27 120.1
N1—C7—C8 123.68 (13) C26—C27—H27 120.1
N1—C7—C15 126.17 (13) C29—C28—C27 119.96 (17)
C8—C7—C15 110.16 (12) C29—C28—H28 120.0
N2—C8—C7 123.74 (14) C27—C28—H28 120.0
N2—C8—C9 127.91 (14) C28—C29—C30 120.32 (18)
C7—C8—C9 108.24 (12) C28—C29—H29 119.8
C10—C9—C14 121.55 (14) C30—C29—H29 119.8
C10—C9—C8 129.74 (14) C25—C30—C29 120.19 (16)
C14—C9—C8 108.63 (13) C25—C30—H30 119.9
C11—C10—C9 118.74 (16) C29—C30—H30 119.9
C11—C10—H10 120.6 C32—C31—H31A 109.5
C9—C10—H10 120.6 C32—C31—H31B 109.5
C10—C11—C12 120.38 (16) H31A—C31—H31B 109.5
C10—C11—H11 119.8 C32—C31—H31C 109.5
C12—C11—H11 119.8 H31A—C31—H31C 109.5
C11—C12—C13 121.07 (15) H31B—C31—H31C 109.5
C11—C12—H12 119.5 C31—C32—O2 109.46 (18)
C13—C12—H12 119.5 C31—C32—H32A 109.8
C12—C13—C14 119.45 (14) O2—C32—H32A 109.8
C12—C13—H13 120.3 C31—C32—H32B 109.8
C14—C13—H13 120.3 O2—C32—H32B 109.8
C13—C14—C9 118.73 (14) H32A—C32—H32B 108.2
C13—C14—C15 130.38 (13) O3—C33—O2 123.62 (16)
C9—C14—C15 110.87 (12) O3—C33—C34 125.49 (16)
C7—C15—C14 100.73 (11) O2—C33—C34 110.89 (12)
C7—C15—C34 112.04 (11) C33—C34—C35 113.57 (12)
C14—C15—C34 120.22 (11) C33—C34—C15 114.86 (12)
C7—C15—C16 109.35 (10) C35—C34—C15 106.14 (11)
C14—C15—C16 112.16 (11) C33—C34—H34 107.3
C34—C15—C16 102.35 (10) C35—C34—H34 107.3
N4—C16—C18 114.48 (12) C15—C34—H34 107.3
N4—C16—C17 115.63 (11) N4—C35—C34 103.40 (11)
C18—C16—C17 101.08 (11) N4—C35—H35A 111.1
N4—C16—C15 102.63 (11) C34—C35—H35A 111.1
C18—C16—C15 115.02 (11) N4—C35—H35B 111.1
C17—C16—C15 108.36 (11) C34—C35—H35B 111.1
O1—C17—N3 125.16 (14) H35A—C35—H35B 109.0
O1—C17—C16 127.30 (14) N4—C36—H36A 109.5
N3—C17—C16 107.53 (11) N4—C36—H36B 109.5
C19—C18—C23 119.96 (14) H36A—C36—H36B 109.5
C19—C18—C16 130.95 (15) N4—C36—H36C 109.5
C23—C18—C16 109.03 (12) H36A—C36—H36C 109.5
C18—C19—C20 118.79 (17) H36B—C36—H36C 109.5
C18—C19—H19 120.6 C7—N1—C1 114.53 (13)
C20—C19—H19 120.6 C8—N2—C6 114.07 (14)
C21—C20—C19 120.53 (17) C17—N3—C23 110.92 (12)
C21—C20—H20 119.7 C17—N3—C24 123.73 (13)
C19—C20—H20 119.7 C23—N3—C24 125.33 (14)
C20—C21—C22 121.83 (17) C16—N4—C36 115.10 (13)
C20—C21—H21 119.1 C16—N4—C35 107.01 (12)
C22—C21—H21 119.1 C36—N4—C35 114.35 (13)
C23—C22—C21 117.12 (18) C33—O2—C32 115.43 (14)
C23—C22—H22 121.4
N1—C1—C2—C3 −179.60 (18) C23—C18—C19—C20 −2.6 (2)
C6—C1—C2—C3 0.0 (3) C16—C18—C19—C20 −179.42 (15)
C1—C2—C3—C4 1.1 (4) C18—C19—C20—C21 0.6 (3)
C2—C3—C4—C5 −0.8 (4) C19—C20—C21—C22 1.4 (3)
C3—C4—C5—C6 −0.5 (4) C20—C21—C22—C23 −1.3 (3)
N1—C1—C6—N2 −2.5 (3) C21—C22—C23—C18 −0.8 (2)
C2—C1—C6—N2 177.92 (16) C21—C22—C23—N3 174.94 (16)
N1—C1—C6—C5 178.32 (17) C19—C18—C23—C22 2.7 (2)
C2—C1—C6—C5 −1.2 (3) C16—C18—C23—C22 −179.78 (14)
C4—C5—C6—N2 −177.67 (19) C19—C18—C23—N3 −173.72 (13)
C4—C5—C6—C1 1.5 (3) C16—C18—C23—N3 3.76 (16)
N1—C7—C8—N2 −3.8 (2) N3—C24—C25—C26 155.66 (15)
C15—C7—C8—N2 176.38 (14) N3—C24—C25—C30 −27.1 (2)
N1—C7—C8—C9 172.61 (13) C30—C25—C26—C27 0.0 (2)
C15—C7—C8—C9 −7.16 (16) C24—C25—C26—C27 177.35 (15)
N2—C8—C9—C10 −0.8 (3) C25—C26—C27—C28 −0.2 (2)
C7—C8—C9—C10 −177.05 (17) C26—C27—C28—C29 0.1 (3)
N2—C8—C9—C14 175.83 (15) C27—C28—C29—C30 0.2 (3)
C7—C8—C9—C14 −0.44 (16) C26—C25—C30—C29 0.3 (3)
C14—C9—C10—C11 −1.6 (3) C24—C25—C30—C29 −176.91 (17)
C8—C9—C10—C11 174.65 (17) C28—C29—C30—C25 −0.5 (3)
C9—C10—C11—C12 −1.0 (3) O3—C33—C34—C35 8.2 (2)
C10—C11—C12—C13 2.0 (3) O2—C33—C34—C35 −172.55 (14)
C11—C12—C13—C14 −0.5 (3) O3—C33—C34—C15 −114.25 (19)
C12—C13—C14—C9 −2.0 (2) O2—C33—C34—C15 65.02 (17)
C12—C13—C14—C15 175.86 (15) C7—C15—C34—C33 −115.27 (14)
C10—C9—C14—C13 3.1 (2) C14—C15—C34—C33 2.65 (18)
C8—C9—C14—C13 −173.87 (13) C16—C15—C34—C33 127.70 (12)
C10—C9—C14—C15 −175.17 (15) C7—C15—C34—C35 118.37 (13)
C8—C9—C14—C15 7.88 (16) C14—C15—C34—C35 −123.71 (13)
N1—C7—C15—C14 −168.74 (13) C16—C15—C34—C35 1.34 (14)
C8—C7—C15—C14 11.03 (14) C33—C34—C35—N4 −152.74 (13)
N1—C7—C15—C34 −39.74 (19) C15—C34—C35—N4 −25.61 (15)
C8—C7—C15—C34 140.03 (12) C8—C7—N1—C1 3.7 (2)
N1—C7—C15—C16 73.01 (17) C15—C7—N1—C1 −176.57 (13)
C8—C7—C15—C16 −107.22 (13) C2—C1—N1—C7 178.85 (15)
C13—C14—C15—C7 170.60 (14) C6—C1—N1—C7 −0.7 (2)
C9—C14—C15—C7 −11.42 (14) C7—C8—N2—C6 0.4 (2)
C13—C14—C15—C34 47.1 (2) C9—C8—N2—C6 −175.31 (15)
C9—C14—C15—C34 −134.95 (13) C1—C6—N2—C8 2.5 (2)
C13—C14—C15—C16 −73.22 (18) C5—C6—N2—C8 −178.34 (16)
C9—C14—C15—C16 104.77 (13) O1—C17—N3—C23 168.75 (14)
C7—C15—C16—N4 −95.51 (12) C16—C17—N3—C23 −11.93 (15)
C14—C15—C16—N4 153.63 (11) O1—C17—N3—C24 −12.8 (2)
C34—C15—C16—N4 23.44 (13) C16—C17—N3—C24 166.53 (13)
C7—C15—C16—C18 29.47 (16) C22—C23—N3—C17 −170.70 (15)
C14—C15—C16—C18 −81.39 (14) C18—C23—N3—C17 5.45 (16)
C34—C15—C16—C18 148.41 (12) C22—C23—N3—C24 10.9 (2)
C7—C15—C16—C17 141.70 (12) C18—C23—N3—C24 −172.98 (13)
C14—C15—C16—C17 30.85 (15) C25—C24—N3—C17 98.76 (18)
C34—C15—C16—C17 −99.35 (12) C25—C24—N3—C23 −83.00 (19)
N4—C16—C17—O1 −43.3 (2) C18—C16—N4—C36 64.59 (17)
C18—C16—C17—O1 −167.54 (14) C17—C16—N4—C36 −52.33 (18)
C15—C16—C17—O1 71.18 (18) C15—C16—N4—C36 −170.08 (13)
N4—C16—C17—N3 137.37 (12) C18—C16—N4—C35 −167.14 (12)
C18—C16—C17—N3 13.15 (14) C17—C16—N4—C35 75.94 (15)
C15—C16—C17—N3 −108.12 (12) C15—C16—N4—C35 −41.81 (13)
N4—C16—C18—C19 42.1 (2) C34—C35—N4—C16 43.20 (15)
C17—C16—C18—C19 167.08 (15) C34—C35—N4—C36 171.90 (13)
C15—C16—C18—C19 −76.45 (19) O3—C33—O2—C32 6.3 (3)
N4—C16—C18—C23 −135.02 (13) C34—C33—O2—C32 −172.97 (16)
C17—C16—C18—C23 −10.03 (14) C31—C32—O2—C33 172.6 (2)
C15—C16—C18—C23 106.44 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C27—H27···N4i 0.93 2.60 3.446 (2) 152

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2503).

References

  1. Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409. [DOI] [PubMed]
  2. Azizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549–552.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Srinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469. [DOI] [PMC free article] [PubMed]
  9. Zarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149–2156. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011525/bg2503sup1.cif

e-69-0o822-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011525/bg2503Isup2.hkl

e-69-0o822-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES