Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):o825–o826. doi: 10.1107/S1600536813011501

Methyl 5′′-chloro-1′,1′′-dimethyl-2,2′′-dioxodi­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate

Piskala Subburaman Kannan a, PanneerSelvam Yuvaraj b, Karthikeyan Manivannan b, Boreddy Siva Rami Reddy b, Arunachalathevar SubbiahPandi c,*
PMCID: PMC3684914  PMID: 23795016

Abstract

In the title compound, C22H20ClN3O4, the central pyrrolidine ring adopts an envelope conformation on the N atom. The indolinone systems are individually roughly planar, with maximum deviations from their mean planes of 0.130 Å for the spiro C atom of the indolinone unit and 0.172 Å for the carbonyl C atom of the 5-chloro-1-methyl­indolinone unit. They make dihedral angles of 77.7 (8) and 86.1 (8)° with the mean plane through the central pyrrolidine ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds supported by C—H⋯O contacts into chains along the ab diagonal. The structure also features C—H⋯O hydrogen bonds, forming R 2 2(8) and R 2 2(16) rings and generating a three-dimensional array.

Related literature  

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995). For the use of optically active pyrrolidines as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis, see: Suzuki et al. (1994); Huryn et al. (1991). For related structures, see: Ganesh et al. (2012); Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975) and for hydrogen-bond motifs see Bernstein et al. (1995).graphic file with name e-69-0o825-scheme1.jpg

Experimental  

Crystal data  

  • C22H20ClN3O4

  • M r = 425.86

  • Monoclinic, Inline graphic

  • a = 9.2543 (4) Å

  • b = 18.1387 (7) Å

  • c = 12.5147 (5) Å

  • β = 105.026 (2)°

  • V = 2028.90 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.936, T max = 0.957

  • 18586 measured reflections

  • 5021 independent reflections

  • 3789 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.125

  • S = 1.06

  • 5021 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011501/sj5312sup1.cif

e-69-0o825-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011501/sj5312Isup2.hkl

e-69-0o825-Isup2.hkl (245.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.85 (2) 2.18 (2) 2.9112 (18) 143.3 (18)
C15—H15⋯O1i 0.93 2.46 3.156 (2) 132
C22—H22B⋯O3ii 0.96 2.56 3.324 (2) 137
C5—H5⋯O3ii 0.93 2.61 3.499 (2) 160
C9—H9⋯O3iii 0.98 2.54 3.224 (2) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have also been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991).

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometries of the pyrrolidine and indole systems are comparable with those in related structures (Wei et al., 2011; Ganesh et al., 2012). The sum of the angles at N2 [336.9 (1)°] of the pyrrolidine rings is typical of sp3 hybridization. The indoline ring systems [N1/C1-C8 and N3/C12-C19] make dihedral angles of 77.7 (8) ° and 86.1(68° with respect to the mean plane of the central pyrrolidine ring system [N2/C7/C9/C10/C12]. This clearly shows that the indoline ring (N3/C12-C19) and the central pyrrolidine ring system are almost perpendicular to one another. The indole ring systems are essentially planar, with maximum deviations from the mean planes of 0.130 Å for the C12 and -0.172 Å for the C8 atoms, respectively.

The central pyrrolidine ring adopts an envelope conformation on the N2 atom, with puckering parameters q2 = 0.419 (2) Å, φ = 1.555 (2)(Cremer & Pople, 1975 ). The pyrrolidine ring in the chloro-indole ring system adopts a twisted conformation on the C7 and C8 atoms, with puckering parameters of q2 = 0.124 (2) Å, φ = 306.8 (7). The pyrrolidine ring in the indole ring system adopts an envelope conformation on the C12 atom, with puckering parameters q2 = 0.113 (2) Å, φ = 251.6 (9).

In the crystal, six hydrogen bonds formed by each molecule. These include the formation of three inversion related contacts and atom O3 acting as a trifurcated acceptor. The molecules are stabilized by intermolecular C–H···O hydrogen bonds forming R22(8)rings from C9-H9···O3, contacts (Bernstein et al., 1995) while C5–H5···O3 contacts and C22-H22B···O3, H bonds generate R22(16) rings resulting in a three dimensional array Figure 2.

Experimental

A mixture of 1 equivalent of (E)-methyl 2-(5-chloro-1-methyl-2-oxoindolin-3-ylidene) acetate, 1 equivalent of isatin, 1H-indole-2,3-dione, and 1.5 equivalent of sarcosine, N-methylglycine were dissolved in acetonitrile. This reaction mixture was refluxed at 80°C for 8 hours. Progress of the reaction was monitored by thin layer chromatography. The product was dried and purified by column chromatography using ethyl acetate and hexane (1:9) as eluent to afford the title compound. (Yield = 90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement

The H atom bound to N3 was located in a difference Fourier map and its coordinates and atomic displacement parameter were refined freely. All H atoms bound to C were fixed geometrically and allowed to ride on their parent atoms, with C—H distances fixed in the range 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing viewed along a. Dashed lines show the intermolecular N–H···O and C–H···O hydrogen bonds.

Crystal data

C22H20ClN3O4 F(000) = 888
Mr = 425.86 Dx = 1.394 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5021 reflections
a = 9.2543 (4) Å θ = 2.0–28.3°
b = 18.1387 (7) Å µ = 0.22 mm1
c = 12.5147 (5) Å T = 293 K
β = 105.026 (2)° Block, colourless
V = 2028.90 (14) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area detector diffractometer 5021 independent reflections
Radiation source: fine-focus sealed tube 3789 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.936, Tmax = 0.957 k = −24→24
18586 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6292P] where P = (Fo2 + 2Fc2)/3
5021 reflections (Δ/σ)max < 0.001
278 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.59371 (19) 0.05207 (9) 0.28439 (13) 0.0423 (4)
C2 0.45435 (17) 0.08424 (8) 0.24338 (12) 0.0358 (3)
H2 0.3891 0.0908 0.2880 0.043*
C3 0.41592 (15) 0.10629 (8) 0.13379 (12) 0.0301 (3)
C4 0.51723 (16) 0.09636 (8) 0.06936 (12) 0.0334 (3)
C5 0.65753 (18) 0.06619 (10) 0.11172 (15) 0.0446 (4)
H5 0.7247 0.0612 0.0683 0.053*
C6 0.69446 (19) 0.04367 (10) 0.22136 (16) 0.0486 (4)
H6 0.7877 0.0228 0.2525 0.058*
C7 0.27545 (15) 0.14084 (8) 0.06175 (11) 0.0294 (3)
C8 0.30532 (17) 0.13446 (8) −0.05324 (12) 0.0340 (3)
C9 0.11746 (16) 0.10891 (9) 0.05792 (13) 0.0365 (3)
H9 0.0726 0.0954 −0.0194 0.044*
C10 0.02656 (18) 0.17386 (9) 0.08235 (17) 0.0473 (4)
H10A −0.0777 0.1698 0.0417 0.057*
H10B 0.0331 0.1775 0.1608 0.057*
C11 0.0415 (2) 0.30826 (11) 0.0677 (2) 0.0601 (5)
H11A 0.0551 0.3134 0.1460 0.090*
H11B −0.0631 0.3117 0.0308 0.090*
H11C 0.0949 0.3467 0.0417 0.090*
C12 0.25861 (16) 0.22640 (8) 0.08568 (12) 0.0319 (3)
C13 0.32532 (18) 0.24031 (8) 0.21214 (13) 0.0361 (3)
C14 0.47566 (18) 0.30011 (8) 0.12068 (13) 0.0362 (3)
C15 0.5915 (2) 0.34053 (11) 0.09938 (15) 0.0489 (4)
H15 0.6722 0.3557 0.1563 0.059*
C16 0.5830 (2) 0.35771 (11) −0.00992 (16) 0.0536 (5)
H16 0.6609 0.3837 −0.0267 0.064*
C17 0.4617 (2) 0.33718 (11) −0.09432 (15) 0.0507 (4)
H17 0.4572 0.3508 −0.1668 0.061*
C18 0.3457 (2) 0.29619 (9) −0.07182 (14) 0.0426 (4)
H18 0.2630 0.2828 −0.1284 0.051*
C19 0.35598 (16) 0.27576 (8) 0.03628 (12) 0.0333 (3)
C20 0.12538 (16) 0.03924 (9) 0.12354 (14) 0.0397 (4)
C21 0.1033 (3) −0.01945 (12) 0.2852 (2) 0.0683 (6)
H21A 0.0331 −0.0556 0.2467 0.102*
H21B 0.0828 −0.0082 0.3548 0.102*
H21C 0.2030 −0.0385 0.2980 0.102*
C22 0.5254 (2) 0.11715 (12) −0.12913 (15) 0.0528 (5)
H22A 0.4533 0.1265 −0.1982 0.079*
H22B 0.5717 0.0701 −0.1322 0.079*
H22C 0.6004 0.1550 −0.1158 0.079*
N1 0.45105 (15) 0.11694 (7) −0.04029 (10) 0.0367 (3)
N2 0.09833 (14) 0.23692 (7) 0.04428 (12) 0.0406 (3)
N3 0.45486 (16) 0.27829 (8) 0.22362 (12) 0.0406 (3)
O1 0.21387 (13) 0.14407 (7) −0.14168 (9) 0.0467 (3)
O2 0.27254 (15) 0.22036 (7) 0.28633 (10) 0.0516 (3)
O3 0.16251 (15) −0.01881 (7) 0.09239 (12) 0.0535 (3)
O4 0.08942 (15) 0.04712 (7) 0.21895 (11) 0.0513 (3)
Cl1 0.63981 (7) 0.01829 (3) 0.41915 (4) 0.07053 (19)
H3 0.513 (2) 0.2916 (11) 0.2850 (18) 0.049 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0456 (9) 0.0388 (8) 0.0358 (8) 0.0052 (7) −0.0016 (7) 0.0025 (6)
C2 0.0376 (8) 0.0349 (7) 0.0336 (8) 0.0014 (6) 0.0071 (6) 0.0003 (6)
C3 0.0270 (6) 0.0294 (7) 0.0325 (7) −0.0002 (5) 0.0053 (5) −0.0014 (5)
C4 0.0305 (7) 0.0335 (7) 0.0356 (8) −0.0014 (6) 0.0076 (6) −0.0012 (6)
C5 0.0316 (8) 0.0501 (9) 0.0524 (10) 0.0058 (7) 0.0117 (7) −0.0023 (8)
C6 0.0341 (8) 0.0506 (10) 0.0540 (10) 0.0111 (7) −0.0014 (7) −0.0009 (8)
C7 0.0263 (7) 0.0323 (7) 0.0286 (7) −0.0005 (5) 0.0052 (5) −0.0001 (5)
C8 0.0367 (8) 0.0330 (7) 0.0310 (7) −0.0001 (6) 0.0067 (6) −0.0023 (6)
C9 0.0269 (7) 0.0396 (8) 0.0411 (8) −0.0036 (6) 0.0054 (6) 0.0015 (6)
C10 0.0304 (8) 0.0446 (9) 0.0689 (12) 0.0030 (7) 0.0162 (8) 0.0085 (8)
C11 0.0521 (11) 0.0455 (10) 0.0865 (15) 0.0154 (8) 0.0250 (10) 0.0088 (10)
C12 0.0308 (7) 0.0327 (7) 0.0323 (7) 0.0014 (6) 0.0082 (6) 0.0022 (6)
C13 0.0410 (8) 0.0346 (7) 0.0343 (8) 0.0038 (6) 0.0130 (6) −0.0011 (6)
C14 0.0392 (8) 0.0342 (7) 0.0354 (8) −0.0014 (6) 0.0099 (6) −0.0026 (6)
C15 0.0441 (9) 0.0532 (10) 0.0481 (10) −0.0141 (8) 0.0093 (8) −0.0031 (8)
C16 0.0530 (11) 0.0557 (11) 0.0569 (11) −0.0133 (8) 0.0231 (9) 0.0038 (9)
C17 0.0635 (11) 0.0524 (10) 0.0403 (9) −0.0060 (9) 0.0206 (8) 0.0075 (8)
C18 0.0465 (9) 0.0432 (9) 0.0353 (8) −0.0043 (7) 0.0057 (7) 0.0043 (7)
C19 0.0350 (7) 0.0313 (7) 0.0340 (7) −0.0006 (6) 0.0100 (6) −0.0004 (6)
C20 0.0264 (7) 0.0416 (8) 0.0490 (9) −0.0062 (6) 0.0059 (6) −0.0003 (7)
C21 0.0829 (16) 0.0602 (13) 0.0651 (14) 0.0020 (11) 0.0252 (12) 0.0181 (10)
C22 0.0556 (11) 0.0664 (12) 0.0441 (10) 0.0031 (9) 0.0265 (8) 0.0001 (8)
N1 0.0373 (7) 0.0425 (7) 0.0319 (6) 0.0029 (5) 0.0122 (5) −0.0009 (5)
N2 0.0295 (6) 0.0379 (7) 0.0538 (8) 0.0059 (5) 0.0096 (6) 0.0070 (6)
N3 0.0455 (8) 0.0442 (8) 0.0300 (7) −0.0070 (6) 0.0060 (6) −0.0053 (6)
O1 0.0484 (7) 0.0567 (7) 0.0291 (6) 0.0048 (6) −0.0004 (5) −0.0010 (5)
O2 0.0606 (8) 0.0612 (8) 0.0394 (6) −0.0015 (6) 0.0243 (6) 0.0023 (6)
O3 0.0497 (7) 0.0394 (7) 0.0746 (9) 0.0012 (5) 0.0218 (7) −0.0042 (6)
O4 0.0610 (8) 0.0437 (7) 0.0529 (7) 0.0004 (6) 0.0213 (6) 0.0059 (6)
Cl1 0.0869 (4) 0.0727 (4) 0.0425 (3) 0.0259 (3) −0.0003 (2) 0.0164 (2)

Geometric parameters (Å, º)

C1—C6 1.377 (3) C12—N2 1.4514 (18)
C1—C2 1.387 (2) C12—C19 1.511 (2)
C1—Cl1 1.7403 (17) C12—C13 1.563 (2)
C2—C3 1.384 (2) C13—O2 1.2110 (19)
C2—H2 0.9300 C13—N3 1.358 (2)
C3—C4 1.398 (2) C14—C15 1.381 (2)
C3—C7 1.5125 (19) C14—C19 1.390 (2)
C4—C5 1.382 (2) C14—N3 1.408 (2)
C4—N1 1.401 (2) C15—C16 1.385 (3)
C5—C6 1.387 (3) C15—H15 0.9300
C5—H5 0.9300 C16—C17 1.378 (3)
C6—H6 0.9300 C16—H16 0.9300
C7—C8 1.539 (2) C17—C18 1.393 (2)
C7—C9 1.5617 (19) C17—H17 0.9300
C7—C12 1.596 (2) C18—C19 1.382 (2)
C8—O1 1.2190 (18) C18—H18 0.9300
C8—N1 1.354 (2) C20—O3 1.203 (2)
C9—C20 1.499 (2) C20—O4 1.328 (2)
C9—C10 1.524 (2) C21—O4 1.452 (2)
C9—H9 0.9800 C21—H21A 0.9600
C10—N2 1.463 (2) C21—H21B 0.9600
C10—H10A 0.9700 C21—H21C 0.9600
C10—H10B 0.9700 C22—N1 1.451 (2)
C11—N2 1.455 (2) C22—H22A 0.9600
C11—H11A 0.9600 C22—H22B 0.9600
C11—H11B 0.9600 C22—H22C 0.9600
C11—H11C 0.9600 N3—H3 0.85 (2)
C6—C1—C2 122.50 (15) C19—C12—C7 113.69 (12)
C6—C1—Cl1 118.94 (13) C13—C12—C7 108.35 (11)
C2—C1—Cl1 118.52 (14) O2—C13—N3 126.24 (15)
C3—C2—C1 117.63 (15) O2—C13—C12 126.59 (15)
C3—C2—H2 121.2 N3—C13—C12 107.17 (13)
C1—C2—H2 121.2 C15—C14—C19 121.86 (15)
C2—C3—C4 119.74 (13) C15—C14—N3 128.56 (15)
C2—C3—C7 132.13 (13) C19—C14—N3 109.57 (13)
C4—C3—C7 108.12 (12) C14—C15—C16 117.50 (16)
C5—C4—C3 122.27 (14) C14—C15—H15 121.2
C5—C4—N1 127.60 (14) C16—C15—H15 121.2
C3—C4—N1 110.03 (13) C17—C16—C15 121.52 (17)
C4—C5—C6 117.53 (15) C17—C16—H16 119.2
C4—C5—H5 121.2 C15—C16—H16 119.2
C6—C5—H5 121.2 C16—C17—C18 120.42 (16)
C1—C6—C5 120.29 (15) C16—C17—H17 119.8
C1—C6—H6 119.9 C18—C17—H17 119.8
C5—C6—H6 119.9 C19—C18—C17 118.67 (16)
C3—C7—C8 101.03 (11) C19—C18—H18 120.7
C3—C7—C9 121.19 (12) C17—C18—H18 120.7
C8—C7—C9 109.70 (12) C18—C19—C14 119.87 (14)
C3—C7—C12 113.69 (11) C18—C19—C12 131.46 (14)
C8—C7—C12 107.37 (11) C14—C19—C12 108.64 (13)
C9—C7—C12 103.31 (11) O3—C20—O4 123.00 (16)
O1—C8—N1 125.30 (14) O3—C20—C9 122.54 (16)
O1—C8—C7 126.00 (14) O4—C20—C9 114.46 (14)
N1—C8—C7 108.70 (12) O4—C21—H21A 109.5
C20—C9—C10 119.54 (14) O4—C21—H21B 109.5
C20—C9—C7 112.55 (12) H21A—C21—H21B 109.5
C10—C9—C7 105.56 (12) O4—C21—H21C 109.5
C20—C9—H9 106.1 H21A—C21—H21C 109.5
C10—C9—H9 106.1 H21B—C21—H21C 109.5
C7—C9—H9 106.1 N1—C22—H22A 109.5
N2—C10—C9 102.60 (13) N1—C22—H22B 109.5
N2—C10—H10A 111.2 H22A—C22—H22B 109.5
C9—C10—H10A 111.2 N1—C22—H22C 109.5
N2—C10—H10B 111.2 H22A—C22—H22C 109.5
C9—C10—H10B 111.2 H22B—C22—H22C 109.5
H10A—C10—H10B 109.2 C8—N1—C4 110.42 (12)
N2—C11—H11A 109.5 C8—N1—C22 124.27 (14)
N2—C11—H11B 109.5 C4—N1—C22 125.28 (14)
H11A—C11—H11B 109.5 C12—N2—C11 115.75 (14)
N2—C11—H11C 109.5 C12—N2—C10 106.81 (12)
H11A—C11—H11C 109.5 C11—N2—C10 114.29 (14)
H11B—C11—H11C 109.5 C13—N3—C14 111.86 (14)
N2—C12—C19 116.02 (12) C13—N3—H3 125.2 (13)
N2—C12—C13 116.05 (12) C14—N3—H3 122.7 (13)
C19—C12—C13 101.40 (12) C20—O4—C21 114.76 (15)
N2—C12—C7 101.61 (11)
C6—C1—C2—C3 2.0 (2) C19—C12—C13—N3 −11.00 (15)
Cl1—C1—C2—C3 −175.78 (11) C7—C12—C13—N3 108.91 (13)
C1—C2—C3—C4 −0.6 (2) C19—C14—C15—C16 1.4 (3)
C1—C2—C3—C7 178.34 (15) N3—C14—C15—C16 −177.23 (17)
C2—C3—C4—C5 −1.2 (2) C14—C15—C16—C17 1.8 (3)
C7—C3—C4—C5 179.57 (14) C15—C16—C17—C18 −2.1 (3)
C2—C3—C4—N1 175.27 (13) C16—C17—C18—C19 −0.9 (3)
C7—C3—C4—N1 −3.92 (16) C17—C18—C19—C14 4.1 (2)
C3—C4—C5—C6 1.8 (2) C17—C18—C19—C12 −173.57 (16)
N1—C4—C5—C6 −174.09 (15) C15—C14—C19—C18 −4.4 (2)
C2—C1—C6—C5 −1.4 (3) N3—C14—C19—C18 174.48 (14)
Cl1—C1—C6—C5 176.30 (14) C15—C14—C19—C12 173.71 (16)
C4—C5—C6—C1 −0.5 (3) N3—C14—C19—C12 −7.39 (17)
C2—C3—C7—C8 −169.10 (15) N2—C12—C19—C18 −44.6 (2)
C4—C3—C7—C8 9.95 (15) C13—C12—C19—C18 −171.21 (16)
C2—C3—C7—C9 −47.8 (2) C7—C12—C19—C18 72.7 (2)
C4—C3—C7—C9 131.25 (14) N2—C12—C19—C14 137.60 (14)
C2—C3—C7—C12 76.21 (19) C13—C12—C19—C14 10.95 (15)
C4—C3—C7—C12 −104.73 (13) C7—C12—C19—C14 −105.10 (14)
C3—C7—C8—O1 167.44 (15) C10—C9—C20—O3 161.37 (16)
C9—C7—C8—O1 38.4 (2) C7—C9—C20—O3 −73.93 (19)
C12—C7—C8—O1 −73.23 (18) C10—C9—C20—O4 −19.2 (2)
C3—C7—C8—N1 −13.09 (15) C7—C9—C20—O4 105.49 (15)
C9—C7—C8—N1 −142.15 (13) O1—C8—N1—C4 −168.84 (15)
C12—C7—C8—N1 106.24 (13) C7—C8—N1—C4 11.68 (16)
C3—C7—C9—C20 −5.1 (2) O1—C8—N1—C22 9.1 (3)
C8—C7—C9—C20 111.93 (14) C7—C8—N1—C22 −170.33 (15)
C12—C7—C9—C20 −133.82 (13) C5—C4—N1—C8 171.24 (16)
C3—C7—C9—C10 126.97 (15) C3—C4—N1—C8 −5.04 (17)
C8—C7—C9—C10 −116.01 (14) C5—C4—N1—C22 −6.7 (3)
C12—C7—C9—C10 −1.77 (15) C3—C4—N1—C22 177.01 (15)
C20—C9—C10—N2 154.82 (14) C19—C12—N2—C11 −64.38 (19)
C7—C9—C10—N2 26.84 (17) C13—C12—N2—C11 54.53 (19)
C3—C7—C12—N2 −157.26 (12) C7—C12—N2—C11 171.79 (14)
C8—C7—C12—N2 91.88 (13) C19—C12—N2—C10 167.10 (14)
C9—C7—C12—N2 −24.03 (14) C13—C12—N2—C10 −73.99 (17)
C3—C7—C12—C19 77.35 (15) C7—C12—N2—C10 43.27 (15)
C8—C7—C12—C19 −33.51 (15) C9—C10—N2—C12 −45.11 (17)
C9—C7—C12—C19 −149.42 (12) C9—C10—N2—C11 −174.47 (15)
C3—C7—C12—C13 −34.55 (16) O2—C13—N3—C14 −173.29 (16)
C8—C7—C12—C13 −145.41 (12) C12—C13—N3—C14 7.43 (17)
C9—C7—C12—C13 98.68 (13) C15—C14—N3—C13 178.58 (17)
N2—C12—C13—O2 43.1 (2) C19—C14—N3—C13 −0.23 (19)
C19—C12—C13—O2 169.72 (16) O3—C20—O4—C21 2.0 (2)
C7—C12—C13—O2 −70.37 (19) C9—C20—O4—C21 −177.38 (16)
N2—C12—C13—N3 −137.63 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.85 (2) 2.18 (2) 2.9112 (18) 143.3 (18)
C15—H15···O1i 0.93 2.46 3.156 (2) 132
C22—H22B···O3ii 0.96 2.56 3.324 (2) 137
C5—H5···O3ii 0.93 2.61 3.499 (2) 160
C9—H9···O3iii 0.98 2.54 3.224 (2) 127
C9—H9···O1 0.98 2.42 2.932 (2) 112

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5312).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker. (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ganesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902–o2903. [DOI] [PMC free article] [PubMed]
  6. Huryn, D. M., Trost, B. M. & Fleming, I. (1991). C. Org. Synth. 1, 64–74.
  7. Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465. [PubMed]
  8. Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557. [PubMed]
  9. Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703. [DOI] [PubMed]
  13. Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.
  14. Waldmann, H. (1995). Synlett, pp. 133–141.
  15. Wei, A. C., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3125. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011501/sj5312sup1.cif

e-69-0o825-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011501/sj5312Isup2.hkl

e-69-0o825-Isup2.hkl (245.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES