Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 4;69(Pt 6):o829. doi: 10.1107/S1600536813011811

N-(2-Bromo-4-methyl­phen­yl)-2-(5-methyl-2-phenyl­pyrazolo­[1,5-a]pyrimidin-7-yl)acetamide

Ibtissam Bassoude a,b,*, Sabine Berteina-Raboin b, El Mokhtar Essassi a,c, Gérald Guillaumet b, Lahcen El Ammari d
PMCID: PMC3684917  PMID: 23795019

Abstract

The fused pyrazole and pyrimidine rings in the title compound, C22H19BrN4O, are almost coplanar, their planes being inclined to one another by 2.08 (13)°. The dihedral angles formed by the mean plane of the fused ring system and the phenyl and benzene rings are 16.21 (4) and 82.84 (4)°, respectively. An intra­molecular N—H⋯N hydrogen bond is observed. In the crystal, mol­ecules form inversion dimers via pairs of C—H⋯O hydrogen bonds. π–π inter­actions, with centroid–centroid distances of 3.4916 (9) Å, connect the dimers into a three-dimensional network.

Related literature  

For pharmacological and biochemical properties of pyrazolo­[1,5-a]pyrimidine derivatives, see: Selleri et al. (2005); Almansa et al. (2001); Suzuki et al. (2001); Chen et al. (2004). For related structures, see: Bassoude et al. (2013a ,b ).graphic file with name e-69-0o829-scheme1.jpg

Experimental  

Crystal data  

  • C22H19BrN4O

  • M r = 435.32

  • Monoclinic, Inline graphic

  • a = 9.8102 (6) Å

  • b = 7.2915 (4) Å

  • c = 27.0162 (14) Å

  • β = 92.942 (3)°

  • V = 1929.95 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 296 K

  • 0.42 × 0.33 × 0.25 mm

Data collection  

  • Bruker X8 APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.739, T max = 0.867

  • 29996 measured reflections

  • 6371 independent reflections

  • 3830 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.107

  • S = 1.02

  • 6371 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011811/rz5060sup1.cif

e-69-0o829-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011811/rz5060Isup2.hkl

e-69-0o829-Isup2.hkl (311.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011811/rz5060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2 0.86 2.17 2.927 (2) 147
C14—H14⋯O1i 0.93 2.43 3.189 (2) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray diffraction measurements.

supplementary crystallographic information

Comment

Pyrazolo[1,5-a]pyrimidines have attracted considerable interest because of their biological activity. For instance, they are known for their potent utility as selective peripheral benzodiazepine receptor ligands (Selleri et al., 2005), COX-2 selective inhibitors (Almansa et al., 2001), HMG-CoA reductase inhibitors (Suzuki et al., 2001) and CRF1 antagonists (Chen et al., 2004). Our research group targeted at the development of heterocycles with a bridgehead nitrogen atom such the title compound and related compounds recently published (Bassoude et al. 2013a, 2013b).

The crystal structure of the title compound is built up from two fused five (N2/N3/C3–C5) and six-membered (N1/N3/C1–C3/C6) rings linked to one phenyl ring (C17–C22) and to a 2-bromo-4-methylphenyl ring (Br1/C9–C14) through an acetamide group as shown in Fig. 1. The pyrazole and pyrimidine rings are essentially planar with the maximum deviation of 0.0039 (15) and 0.0076 (15) Å for atom C3. The plane through the fused ring system makes a dihedral angles of 16.21 (4)° and 82.84 (4)° with the phenyl ring and with the 2-bromo-4-methylphenyl ring, respectively.

In the crystal (Fig. 2) molecules form inversion dimers via pairs of C14—H14···O1 hydrogen bonds. In addition, π–π interactions connect the dimers into a three-dimensional network, with centroid–centroid distances of 3.4916 (9) Å. An intramolecular N4—H4A···N2 hydrogen bond my help to define the conformation of the molecule.

Experimental

To a solution of 2-bromo-4-methylaniline (0.1 ml, 0.78 mmol) in 4 ml dichloromethane, under argon and at 273 K, were added 0.8 ml of trimethylaluminium in toluene (2M, 1.6 mmol), then the mixture was stirred for 15 min followed by addition of 0.2 g (0.68 mmol) of 7-ethoxycarbonyl-methyl-5-methylpyrazolo[1,5-a]pyrimidine. The reaction mixture was stirred to room temperature for 30 min then heated to reflux for 5 h. After evaporation of solvent under reduced pressure, the residue was extracted with CH2Cl2 and washed with a saturated NaCl solution. The combined organic layers were dried with MgSO4 and concentrated under vacuum. The residue was purified on silica gel by column chromatography using mixture of petroleum ether and ethyl acetate (9:1 v/v) as eluent. The compound was recrystallized from a mixture of cyclohexane/ diethyl ether (1:1 v/v) to give colourless crystals.

Refinement

All H atoms could be located in a difference Fourier map and were treated as riding, with C—H = 0.93–0.97 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. Two outliers (1 0 0; 0 0 2) were omitted from the last refinement cycles

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound showing C14–H14A···O1 and N4–H4···N2 hydrogen bonds as blue dashed lines and a π···π contact as green line. The red spheres represent the centroids of the pyrimidine rings.

Crystal data

C22H19BrN4O F(000) = 888
Mr = 435.32 Dx = 1.498 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6371 reflections
a = 9.8102 (6) Å θ = 2.5–31.4°
b = 7.2915 (4) Å µ = 2.15 mm1
c = 27.0162 (14) Å T = 296 K
β = 92.942 (3)° Block, colourless
V = 1929.95 (19) Å3 0.42 × 0.33 × 0.25 mm
Z = 4

Data collection

Bruker X8 APEXII area-detector diffractometer 6371 independent reflections
Radiation source: fine-focus sealed tube 3830 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
φ and ω scans θmax = 31.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.739, Tmax = 0.867 k = −10→10
29996 measured reflections l = −39→39

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.107 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.2795P] where P = (Fo2 + 2Fc2)/3
6371 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6173 (2) 0.8274 (2) −0.03898 (7) 0.0377 (4)
H1 0.6836 0.8688 −0.0597 0.045*
C2 0.4907 (2) 0.7594 (2) −0.05997 (7) 0.0389 (4)
C3 0.41574 (19) 0.7044 (2) 0.01713 (7) 0.0363 (4)
C4 0.3365 (2) 0.6608 (2) 0.05592 (7) 0.0389 (4)
H4 0.2478 0.6155 0.0539 0.047*
C5 0.41646 (19) 0.6987 (2) 0.09908 (7) 0.0345 (4)
C6 0.64217 (19) 0.8324 (2) 0.01096 (7) 0.0329 (4)
C7 0.76984 (19) 0.9055 (2) 0.03730 (7) 0.0366 (4)
H7A 0.7446 0.9745 0.0661 0.044*
H7B 0.8141 0.9894 0.0154 0.044*
C8 0.87117 (19) 0.7571 (2) 0.05392 (7) 0.0330 (4)
C9 0.89437 (18) 0.4831 (2) 0.10641 (7) 0.0332 (4)
C10 0.89659 (19) 0.4341 (2) 0.15591 (7) 0.0361 (4)
C11 0.9568 (2) 0.2718 (3) 0.17291 (8) 0.0422 (5)
H11 0.9557 0.2416 0.2063 0.051*
C12 1.0184 (2) 0.1551 (3) 0.14043 (8) 0.0436 (5)
C13 1.0160 (2) 0.2037 (3) 0.09087 (8) 0.0432 (5)
H13 1.0567 0.1265 0.0685 0.052*
C14 0.9547 (2) 0.3641 (3) 0.07366 (8) 0.0397 (4)
H14 0.9538 0.3925 0.0401 0.048*
C15 1.0869 (3) −0.0203 (3) 0.15829 (10) 0.0691 (7)
H15A 1.1706 0.0085 0.1766 0.104*
H15B 1.1060 −0.0955 0.1303 0.104*
H15C 1.0274 −0.0854 0.1793 0.104*
C16 0.4645 (2) 0.7598 (3) −0.11515 (8) 0.0512 (5)
H16C 0.4995 0.8709 −0.1287 0.077*
H16A 0.3680 0.7523 −0.1229 0.077*
H16B 0.5091 0.6563 −0.1292 0.077*
C17 0.38277 (19) 0.6745 (2) 0.15115 (7) 0.0361 (4)
C18 0.2742 (2) 0.5647 (3) 0.16391 (9) 0.0470 (5)
H18 0.2209 0.5064 0.1392 0.056*
C19 0.2447 (2) 0.5415 (3) 0.21290 (9) 0.0541 (6)
H19 0.1721 0.4670 0.2209 0.065*
C20 0.3217 (2) 0.6275 (3) 0.25011 (9) 0.0533 (6)
H20 0.3013 0.6116 0.2831 0.064*
C21 0.4294 (2) 0.7376 (3) 0.23797 (9) 0.0518 (5)
H21 0.4818 0.7966 0.2628 0.062*
C22 0.4595 (2) 0.7604 (3) 0.18897 (8) 0.0452 (5)
H22 0.5326 0.8345 0.1812 0.054*
N1 0.39309 (17) 0.6994 (2) −0.03282 (6) 0.0405 (4)
N2 0.54163 (15) 0.7640 (2) 0.08894 (6) 0.0338 (3)
N3 0.53930 (15) 0.76798 (18) 0.03862 (6) 0.0317 (3)
N4 0.82608 (16) 0.6428 (2) 0.08896 (6) 0.0370 (4)
H4A 0.7499 0.6695 0.1016 0.044*
O1 0.98349 (14) 0.74725 (19) 0.03713 (5) 0.0453 (3)
Br1 0.81300 (3) 0.58958 (3) 0.201758 (8) 0.05961 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0391 (11) 0.0356 (9) 0.0378 (10) 0.0071 (8) −0.0030 (9) 0.0039 (8)
C2 0.0459 (12) 0.0288 (8) 0.0409 (11) 0.0120 (8) −0.0089 (9) −0.0027 (7)
C3 0.0315 (10) 0.0304 (8) 0.0458 (12) 0.0060 (7) −0.0103 (9) −0.0036 (7)
C4 0.0268 (10) 0.0370 (9) 0.0523 (12) 0.0007 (8) −0.0044 (9) −0.0031 (8)
C5 0.0282 (10) 0.0278 (8) 0.0473 (11) 0.0048 (7) −0.0008 (8) −0.0028 (7)
C6 0.0303 (10) 0.0275 (8) 0.0405 (10) 0.0056 (7) −0.0035 (8) 0.0011 (7)
C7 0.0330 (10) 0.0341 (9) 0.0420 (11) 0.0014 (8) −0.0036 (8) 0.0021 (7)
C8 0.0294 (10) 0.0381 (9) 0.0309 (9) 0.0008 (7) −0.0032 (8) −0.0041 (7)
C9 0.0223 (9) 0.0400 (9) 0.0371 (10) 0.0042 (7) −0.0009 (8) 0.0022 (7)
C10 0.0291 (10) 0.0442 (10) 0.0350 (10) 0.0004 (8) 0.0005 (8) 0.0002 (8)
C11 0.0409 (12) 0.0462 (10) 0.0387 (11) −0.0011 (9) −0.0055 (9) 0.0086 (8)
C12 0.0366 (11) 0.0381 (9) 0.0549 (13) 0.0032 (8) −0.0102 (10) 0.0024 (9)
C13 0.0359 (11) 0.0409 (10) 0.0522 (13) 0.0050 (8) −0.0026 (9) −0.0077 (9)
C14 0.0345 (11) 0.0466 (10) 0.0377 (11) 0.0048 (8) −0.0027 (9) −0.0010 (8)
C15 0.0758 (19) 0.0495 (12) 0.0796 (18) 0.0205 (13) −0.0183 (15) 0.0084 (12)
C16 0.0619 (15) 0.0482 (11) 0.0422 (12) 0.0110 (10) −0.0118 (11) −0.0065 (9)
C17 0.0277 (10) 0.0335 (9) 0.0470 (12) 0.0077 (7) 0.0010 (8) −0.0020 (8)
C18 0.0373 (12) 0.0483 (11) 0.0551 (13) −0.0024 (9) 0.0001 (10) −0.0032 (9)
C19 0.0418 (13) 0.0624 (13) 0.0588 (15) −0.0058 (11) 0.0085 (11) 0.0066 (11)
C20 0.0467 (14) 0.0681 (14) 0.0455 (13) 0.0084 (11) 0.0074 (11) 0.0030 (10)
C21 0.0453 (13) 0.0632 (13) 0.0466 (13) −0.0024 (11) 0.0013 (10) −0.0085 (10)
C22 0.0366 (11) 0.0490 (11) 0.0501 (13) −0.0034 (9) 0.0015 (10) −0.0048 (9)
N1 0.0393 (10) 0.0358 (8) 0.0451 (10) 0.0055 (7) −0.0107 (8) −0.0041 (7)
N2 0.0292 (8) 0.0355 (7) 0.0362 (9) 0.0033 (6) −0.0027 (7) −0.0015 (6)
N3 0.0276 (8) 0.0296 (7) 0.0371 (9) 0.0048 (6) −0.0056 (7) −0.0012 (6)
N4 0.0279 (9) 0.0454 (8) 0.0379 (9) 0.0098 (7) 0.0046 (7) 0.0059 (7)
O1 0.0352 (8) 0.0541 (8) 0.0474 (8) 0.0065 (6) 0.0094 (7) 0.0049 (6)
Br1 0.0728 (2) 0.06541 (16) 0.04192 (14) 0.01753 (12) 0.01561 (12) 0.00091 (10)

Geometric parameters (Å, º)

C1—C6 1.359 (3) C11—H11 0.9300
C1—C2 1.428 (3) C12—C13 1.384 (3)
C1—H1 0.9300 C12—C15 1.512 (3)
C2—N1 1.311 (3) C13—C14 1.385 (3)
C2—C16 1.500 (3) C13—H13 0.9300
C3—N1 1.357 (2) C14—H14 0.9300
C3—C4 1.374 (3) C15—H15A 0.9600
C3—N3 1.396 (2) C15—H15B 0.9600
C4—C5 1.399 (3) C15—H15C 0.9600
C4—H4 0.9300 C16—H16C 0.9600
C5—N2 1.358 (2) C16—H16A 0.9600
C5—C17 1.472 (3) C16—H16B 0.9600
C6—N3 1.369 (2) C17—C22 1.387 (3)
C6—C7 1.506 (3) C17—C18 1.390 (3)
C7—C8 1.521 (2) C18—C19 1.380 (3)
C7—H7A 0.9700 C18—H18 0.9300
C7—H7B 0.9700 C19—C20 1.377 (3)
C8—O1 1.215 (2) C19—H19 0.9300
C8—N4 1.353 (2) C20—C21 1.380 (3)
C9—C10 1.383 (3) C20—H20 0.9300
C9—C14 1.393 (3) C21—C22 1.381 (3)
C9—N4 1.412 (2) C21—H21 0.9300
C10—C11 1.390 (3) C22—H22 0.9300
C10—Br1 1.8962 (19) N2—N3 1.359 (2)
C11—C12 1.384 (3) N4—H4A 0.8600
C6—C1—C2 120.76 (19) C13—C14—C9 120.30 (19)
C6—C1—H1 119.6 C13—C14—H14 119.8
C2—C1—H1 119.6 C9—C14—H14 119.8
N1—C2—C1 122.65 (18) C12—C15—H15A 109.5
N1—C2—C16 117.63 (19) C12—C15—H15B 109.5
C1—C2—C16 119.7 (2) H15A—C15—H15B 109.5
N1—C3—C4 133.01 (18) C12—C15—H15C 109.5
N1—C3—N3 121.12 (18) H15A—C15—H15C 109.5
C4—C3—N3 105.85 (16) H15B—C15—H15C 109.5
C3—C4—C5 105.95 (17) C2—C16—H16C 109.5
C3—C4—H4 127.0 C2—C16—H16A 109.5
C5—C4—H4 127.0 H16C—C16—H16A 109.5
N2—C5—C4 112.04 (17) C2—C16—H16B 109.5
N2—C5—C17 118.99 (17) H16C—C16—H16B 109.5
C4—C5—C17 128.97 (18) H16A—C16—H16B 109.5
C1—C6—N3 115.66 (17) C22—C17—C18 118.12 (19)
C1—C6—C7 125.52 (18) C22—C17—C5 120.65 (18)
N3—C6—C7 118.81 (16) C18—C17—C5 121.24 (18)
C6—C7—C8 113.78 (14) C19—C18—C17 120.7 (2)
C6—C7—H7A 108.8 C19—C18—H18 119.7
C8—C7—H7A 108.8 C17—C18—H18 119.7
C6—C7—H7B 108.8 C20—C19—C18 120.7 (2)
C8—C7—H7B 108.8 C20—C19—H19 119.7
H7A—C7—H7B 107.7 C18—C19—H19 119.7
O1—C8—N4 124.06 (17) C19—C20—C21 119.3 (2)
O1—C8—C7 121.57 (17) C19—C20—H20 120.4
N4—C8—C7 114.36 (16) C21—C20—H20 120.4
C10—C9—C14 117.85 (17) C20—C21—C22 120.1 (2)
C10—C9—N4 121.28 (16) C20—C21—H21 119.9
C14—C9—N4 120.76 (17) C22—C21—H21 119.9
C9—C10—C11 121.64 (18) C21—C22—C17 121.1 (2)
C9—C10—Br1 119.42 (14) C21—C22—H22 119.4
C11—C10—Br1 118.93 (15) C17—C22—H22 119.4
C12—C11—C10 120.42 (19) C2—N1—C3 117.42 (17)
C12—C11—H11 119.8 C5—N2—N3 103.92 (14)
C10—C11—H11 119.8 N2—N3—C6 125.34 (15)
C11—C12—C13 118.01 (18) N2—N3—C3 112.24 (15)
C11—C12—C15 121.3 (2) C6—N3—C3 122.38 (16)
C13—C12—C15 120.7 (2) C8—N4—C9 125.11 (15)
C12—C13—C14 121.77 (19) C8—N4—H4A 117.4
C12—C13—H13 119.1 C9—N4—H4A 117.4
C14—C13—H13 119.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N2 0.86 2.17 2.927 (2) 147
C14—H14···O1i 0.93 2.43 3.189 (2) 139

Symmetry code: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5060).

References

  1. Almansa, C. A., Alberto, F., Cavalcanti, F. L., Gomez, L. A., Miralles, A., Merlos, M., Garcia-Rafanell, J. & Forn, J. (2001). J. Med. Chem. 44, 350–361. [DOI] [PubMed]
  2. Bassoude, I., Berteina-Raboin, S., Essassi, E. M., Guillaumet, G. & El Ammari, L. (2013a). Acta Cryst. E69, o740. [DOI] [PMC free article] [PubMed]
  3. Bassoude, I., Berteina-Raboin, S., Essassi, E. M., Guillaumet, G. & El Ammari, L. (2013b). Acta Cryst. E69, o749. [DOI] [PMC free article] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, C., Wilcoxen, K. M., Huang, C. Q., Xie, Y.-F., McCarthy, J. R., Webb, T. R., Zhu, Y.-F., Saunders, J., Liu, X.-J., Chen, T.-K., Bozigian, H. & Grigoriadis, D. E. (2004). J. Med. Chem. 47, 4787–4798. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Selleri, S., Gratteri, P., Costagli, C., Bonaccini, C., Costanzo, A., Melani, F., Guerrini, G., Ciciani, G., Costa, B., Spinetti, F., Martini, C. & Bruni, F. (2005). Bioorg. Med. Chem. 13, 4821–4834. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Suzuki, M., Iwasaki, H., Fujikawa, Y., Sakashita, M., Kitahara, M. & Sakoda, R. (2001). Bioorg. Med. Chem. Lett. 11, 1285–1288. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813011811/rz5060sup1.cif

e-69-0o829-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011811/rz5060Isup2.hkl

e-69-0o829-Isup2.hkl (311.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011811/rz5060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES