Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):o848. doi: 10.1107/S1600536813010611

Ethyl 3-bromo-4-cyano-5-[(2-eth­oxy-2-oxoeth­yl)sulfan­yl]thio­phene-2-carboxyl­ate

Xiuping Li a,*, Xiaochuan Jia a, Jing Li a
PMCID: PMC3684932  PMID: 23795034

Abstract

The title compound, C12H12BrNO4S2, was obtained by the Sandmeyer reaction from ethyl 3-amino-4-cyano-5-[(2-eth­oxy-2-oxoeth­yl)sulfan­yl]thio­phene-2-carboxyl­ate. The dihedral angle between the thiophene ring and linked CO2 ester group is 2.0 (5)°.

Related literature  

For background literature on the use of 3-amino-4-cyano-5-eth­oxy­carbonyl­methyl­sulfanyl-thio­phene-2-carb­oxy­lic acid ethyl ester as an important inter­mediate compound for the synthesis of thieno­pyrimidine derivatives, which are thought to be potential biologically active compounds or pharmaceuticals, see: Liu et al. (2008). For a related compound, see: Padmavathi et al. (2011).graphic file with name e-69-0o848-scheme1.jpg

Experimental  

Crystal data  

  • C12H12BrNO4S2

  • M r = 378.26

  • Monoclinic, Inline graphic

  • a = 8.5896 (17) Å

  • b = 10.837 (2) Å

  • c = 16.584 (3) Å

  • β = 99.44 (3)°

  • V = 1522.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.12 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.587, T max = 0.716

  • 15211 measured reflections

  • 3596 independent reflections

  • 2224 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.157

  • S = 1.00

  • 3596 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813010611/zj2102sup1.cif

e-69-0o848-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010611/zj2102Isup2.hkl

e-69-0o848-Isup2.hkl (176.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010611/zj2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors appreciate the help of Dr Haibin Song in Nankai University for the crystal X-ray measurement.

supplementary crystallographic information

Comment

3-Amino-4-cyano-5-ethoxycarbonylmethylsulfanyl-thiophene-2-carboxylic acid ethyl ester is an important intermediate compound for sythesis of thienothienopyrimidines derivatives, which are thought to be potential biological active compounds or pharmaceuticals (Liu, et al.,2008). We obtained the title compound by the Sandmeyer reaction from compound 3-Amino-4-cyano-5-ethoxycarbonylmethylsulfanyl-thiophene-2-carboxylic acid ethyl ester.The crystal for X-ray crystal structure analysis was obtained by recrystallizing the title compound in petroleum ether. In the crystal, the thiophene ring together with its four adjoint groups, i.e. CN, Br, S—CH2 and COO–,was located at one perfect plane, which is consistent with the crystal of 3-Amino-4-cyano-5-ethoxycarbonylmethylsulfany- thiophene-2-carboxylic acid ethyl ester reported in the literature (Padmavathi et al., 2011). The title compound cyrstal demonstrated a crystal system of monoclinic and a spce group of P2(1)/c. There existed hydrogen bond with length of 2.554 Å between one of –SCH2 H atom and the O atom of carbonyl adjoined with thiophene ring of neighbor molecule.

Experimental

To a solution of 3-Amino-4-cyano-5-ethoxycarbonylmethylsulfanyl -thiophene-2-carboxylic acid ethyl ester (1.57 g, 5 mmol) in 70% H2SO4 (13 mL) was added NaNO2 (0.4 g,5,7 mmol) in 5 minutes under ice water temperature. After addition, the solution was stirred for 30 min at room temperature. Then, the reaction mixture was transfered to HBr solution containing CuBr (1 g, 7 mmol). After standing overnight, water (100 mL) was added. The precipitate was collected by filtration and recrystallized from petroleum ether to afford the title compound as colourless crystals, yield 50%.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing structure of the title compound.

Crystal data

C12H12BrNO4S2 F(000) = 760
Mr = 378.26 Dx = 1.650 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3404 reflections
a = 8.5896 (17) Å θ = 3.1–27.9°
b = 10.837 (2) Å µ = 2.98 mm1
c = 16.584 (3) Å T = 293 K
β = 99.44 (3)° Block, colorless
V = 1522.8 (5) Å3 0.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 3596 independent reflections
Radiation source: rotating anode 2224 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.067
ω scans θmax = 27.9°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −11→11
Tmin = 0.587, Tmax = 0.716 k = −14→14
15211 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0817P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.003
3596 reflections Δρmax = 0.43 e Å3
184 parameters Δρmin = −0.71 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.018 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.34684 (5) −0.05401 (5) 0.13435 (3) 0.0723 (3)
S1 0.95059 (11) 0.19092 (9) 0.04312 (6) 0.0421 (3)
S2 0.75972 (12) 0.13383 (10) 0.17935 (7) 0.0505 (3)
O1 1.3519 (4) 0.1042 (3) −0.0246 (2) 0.0703 (9)
O2 1.1477 (3) 0.2261 (3) −0.07630 (18) 0.0577 (8)
O3 0.4240 (3) 0.3685 (3) 0.10494 (18) 0.0559 (8)
O4 0.4796 (4) 0.2478 (3) 0.2147 (2) 0.0744 (10)
N1 1.0569 (5) −0.0869 (4) 0.2904 (3) 0.0784 (13)
C1 1.3411 (7) 0.3617 (5) −0.1215 (3) 0.0825 (16)
H1A 1.2890 0.4277 −0.0980 0.124*
H1B 1.3794 0.3912 −0.1692 0.124*
H1C 1.4282 0.3325 −0.0823 0.124*
C2 1.2285 (6) 0.2598 (5) −0.1446 (3) 0.0667 (13)
H2A 1.1510 0.2847 −0.1911 0.080*
H2B 1.2845 0.1885 −0.1607 0.080*
C3 1.2245 (5) 0.1481 (4) −0.0215 (3) 0.0468 (10)
C4 1.1325 (4) 0.1209 (3) 0.0445 (2) 0.0420 (9)
C5 1.1667 (5) 0.0433 (3) 0.1088 (3) 0.0440 (9)
C6 1.0474 (4) 0.0400 (3) 0.1587 (2) 0.0427 (9)
C7 0.9215 (4) 0.1161 (3) 0.1300 (2) 0.0390 (8)
C8 1.0542 (5) −0.0323 (4) 0.2309 (3) 0.0551 (11)
C9 0.6413 (4) 0.2381 (4) 0.1105 (2) 0.0473 (10)
H9A 0.7050 0.3072 0.0979 0.057*
H9B 0.6003 0.1960 0.0599 0.057*
C10 0.5069 (4) 0.2838 (4) 0.1508 (3) 0.0464 (10)
C11 0.2964 (6) 0.4242 (5) 0.1395 (3) 0.0632 (13)
H11A 0.3373 0.4630 0.1914 0.076*
H11B 0.2205 0.3617 0.1488 0.076*
C12 0.2186 (6) 0.5190 (5) 0.0800 (4) 0.0903 (18)
H12A 0.2957 0.5782 0.0691 0.135*
H12B 0.1371 0.5603 0.1029 0.135*
H12C 0.1733 0.4791 0.0299 0.135*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0499 (4) 0.0728 (4) 0.0911 (5) 0.0186 (2) 0.0023 (3) 0.0000 (3)
S1 0.0381 (5) 0.0419 (5) 0.0472 (6) 0.0045 (4) 0.0093 (4) 0.0038 (4)
S2 0.0452 (6) 0.0526 (6) 0.0570 (7) 0.0040 (5) 0.0186 (5) 0.0114 (5)
O1 0.0539 (19) 0.088 (2) 0.075 (2) 0.0161 (18) 0.0267 (16) 0.0067 (19)
O2 0.0532 (18) 0.0659 (19) 0.0574 (18) 0.0027 (15) 0.0195 (14) 0.0111 (16)
O3 0.0464 (16) 0.0658 (19) 0.0585 (19) 0.0130 (15) 0.0177 (14) −0.0037 (15)
O4 0.074 (2) 0.088 (2) 0.070 (2) 0.0212 (18) 0.0363 (18) 0.0164 (19)
N1 0.073 (3) 0.077 (3) 0.087 (3) 0.012 (2) 0.020 (2) 0.035 (3)
C1 0.100 (4) 0.089 (4) 0.064 (3) −0.022 (3) 0.030 (3) 0.002 (3)
C2 0.076 (3) 0.072 (3) 0.056 (3) −0.004 (3) 0.022 (2) 0.008 (2)
C3 0.040 (2) 0.049 (2) 0.052 (2) −0.0011 (19) 0.0102 (18) −0.005 (2)
C4 0.034 (2) 0.039 (2) 0.054 (2) 0.0016 (16) 0.0101 (17) −0.0058 (18)
C5 0.036 (2) 0.041 (2) 0.054 (2) −0.0013 (16) 0.0032 (18) −0.0033 (18)
C6 0.041 (2) 0.039 (2) 0.047 (2) −0.0030 (17) 0.0034 (18) 0.0045 (17)
C7 0.036 (2) 0.0346 (19) 0.046 (2) −0.0006 (16) 0.0064 (16) −0.0012 (16)
C8 0.045 (2) 0.051 (2) 0.070 (3) 0.006 (2) 0.011 (2) 0.011 (2)
C9 0.036 (2) 0.059 (3) 0.048 (2) 0.0034 (19) 0.0114 (18) 0.003 (2)
C10 0.039 (2) 0.053 (2) 0.049 (2) 0.0003 (19) 0.0099 (18) −0.003 (2)
C11 0.050 (3) 0.070 (3) 0.074 (3) 0.018 (2) 0.023 (2) −0.008 (3)
C12 0.068 (3) 0.097 (4) 0.108 (5) 0.036 (3) 0.021 (3) 0.015 (4)

Geometric parameters (Å, º)

Br1—C5 1.864 (4) C2—H2A 0.9700
S1—C7 1.707 (4) C2—H2B 0.9700
S1—C4 1.734 (4) C3—C4 1.480 (6)
S2—C7 1.735 (4) C4—C5 1.352 (5)
S2—C9 1.798 (4) C5—C6 1.418 (6)
O1—C3 1.202 (5) C6—C7 1.381 (5)
O2—C3 1.335 (5) C6—C8 1.425 (6)
O2—C2 1.468 (5) C9—C10 1.509 (5)
O3—C10 1.323 (5) C9—H9A 0.9700
O3—C11 1.449 (5) C9—H9B 0.9700
O4—C10 1.188 (5) C11—C12 1.504 (7)
N1—C8 1.147 (6) C11—H11A 0.9700
C1—C2 1.477 (7) C11—H11B 0.9700
C1—H1A 0.9600 C12—H12A 0.9600
C1—H1B 0.9600 C12—H12B 0.9600
C1—H1C 0.9600 C12—H12C 0.9600
C7—S1—C4 92.15 (19) C5—C6—C8 124.7 (4)
C7—S2—C9 100.55 (18) C6—C7—S1 111.1 (3)
C3—O2—C2 116.1 (3) C6—C7—S2 123.1 (3)
C10—O3—C11 115.6 (3) S1—C7—S2 125.8 (2)
C2—C1—H1A 109.5 N1—C8—C6 177.4 (5)
C2—C1—H1B 109.5 C10—C9—S2 108.6 (3)
H1A—C1—H1B 109.5 C10—C9—H9A 110.0
C2—C1—H1C 109.5 S2—C9—H9A 110.0
H1A—C1—H1C 109.5 C10—C9—H9B 110.0
H1B—C1—H1C 109.5 S2—C9—H9B 110.0
O2—C2—C1 111.0 (4) H9A—C9—H9B 108.4
O2—C2—H2A 109.4 O4—C10—O3 125.0 (4)
C1—C2—H2A 109.4 O4—C10—C9 124.4 (4)
O2—C2—H2B 109.4 O3—C10—C9 110.6 (4)
C1—C2—H2B 109.4 O3—C11—C12 108.0 (4)
H2A—C2—H2B 108.0 O3—C11—H11A 110.1
O1—C3—O2 124.9 (4) C12—C11—H11A 110.1
O1—C3—C4 123.6 (4) O3—C11—H11B 110.1
O2—C3—C4 111.4 (3) C12—C11—H11B 110.1
C5—C4—C3 129.3 (3) H11A—C11—H11B 108.4
C5—C4—S1 111.1 (3) C11—C12—H12A 109.5
C3—C4—S1 119.5 (3) C11—C12—H12B 109.5
C4—C5—C6 113.1 (3) H12A—C12—H12B 109.5
C4—C5—Br1 126.6 (3) C11—C12—H12C 109.5
C6—C5—Br1 120.4 (3) H12A—C12—H12C 109.5
C7—C6—C5 112.6 (3) H12B—C12—H12C 109.5
C7—C6—C8 122.7 (4)
C3—O2—C2—C1 −83.9 (5) C5—C6—C7—S1 −0.2 (4)
C2—O2—C3—O1 −0.4 (6) C8—C6—C7—S1 179.4 (3)
C2—O2—C3—C4 179.9 (3) C5—C6—C7—S2 −178.6 (3)
O1—C3—C4—C5 −2.5 (7) C8—C6—C7—S2 0.9 (6)
O2—C3—C4—C5 177.2 (4) C4—S1—C7—C6 −0.1 (3)
O1—C3—C4—S1 179.4 (4) C4—S1—C7—S2 178.3 (3)
O2—C3—C4—S1 −1.0 (5) C9—S2—C7—C6 −178.3 (3)
C7—S1—C4—C5 0.4 (3) C9—S2—C7—S1 3.5 (3)
C7—S1—C4—C3 178.9 (3) C7—C6—C8—N1 −36 (12)
C3—C4—C5—C6 −178.9 (4) C5—C6—C8—N1 144 (11)
S1—C4—C5—C6 −0.6 (4) C7—S2—C9—C10 −169.7 (3)
C3—C4—C5—Br1 0.6 (6) C11—O3—C10—O4 3.5 (6)
S1—C4—C5—Br1 178.9 (2) C11—O3—C10—C9 −176.8 (4)
C4—C5—C6—C7 0.5 (5) S2—C9—C10—O4 −5.4 (6)
Br1—C5—C6—C7 −179.0 (3) S2—C9—C10—O3 174.9 (3)
C4—C5—C6—C8 −179.0 (4) C10—O3—C11—C12 178.9 (4)
Br1—C5—C6—C8 1.5 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2102).

References

  1. Liu, M. G., Hu, Y. G. & Ding, M. W. (2008). Tetrahedron, 64, 9052–9059.
  2. Padmavathi, V., Reddy, G. D., Reddy, S. N. & Mahesh, K. (2011). Eur. J. Med. Chem. 46, 1367–1373. [DOI] [PubMed]
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813010611/zj2102sup1.cif

e-69-0o848-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010611/zj2102Isup2.hkl

e-69-0o848-Isup2.hkl (176.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010611/zj2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES