Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):o849. doi: 10.1107/S1600536813010416

(E)-9-(But-2-en-1-yl)-6-chloro-9H-purine

Fredrik Lundvall a,*, Jindrich Kania b,*, Lise-Lotte Gundersen b
PMCID: PMC3684933  PMID: 23795035

Abstract

The asymmetric unit of the title compound, C9H9ClN4, contains two mol­ecules. In the crystal, the mol­ecules are ordered in a chain-like fashion along the a axis, and form layers offset relative to the C plane by approximately 30°. This ordering does not, however, appear to be directed by classical hydrogen bonding.The allylic side chains of both independent mol­ecules are disordered, with occupancies of 0.870 (4) and 0.934 (3) for the major components. The disorder components represent two possible spatial orientations of the atoms around the C=C double bond.

Related literature  

For synthetic background and applications, see Kania & Gundersen (2013).graphic file with name e-69-0o849-scheme1.jpg

Experimental  

Crystal data  

  • C9H9ClN4

  • M r = 208.65

  • Triclinic, Inline graphic

  • a = 8.1818 (11) Å

  • b = 9.7103 (13) Å

  • c = 13.9435 (19) Å

  • α = 69.642 (1)°

  • β = 75.448 (1)°

  • γ = 67.032 (1)°

  • V = 947.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 1.13 × 0.35 × 0.22 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005) T min = 0.683, T max = 0.924

  • 10801 measured reflections

  • 4428 independent reflections

  • 4103 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.04

  • 4428 reflections

  • 283 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004) and ChemBioDraw Ultra (CambridgeSoft, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010416/lr2100sup1.cif

e-69-0o849-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010416/lr2100Isup2.hkl

e-69-0o849-Isup2.hkl (216.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010416/lr2100Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the support from the Norwegian Research Council (KOSK II, project 184929 and RENERGI, project 190980) and from the Department of Chemistry, UiO. We also acknowledge Dr David S. Wragg for invaluable assistance with the refinement.

supplementary crystallographic information

Comment

The title compound is an N-allyl substituted purine intended as a starting material for investigation of the double bond rearragement in N-allylic systems. (E)-9-(but-2-en-1-yl)-6-chloro-9H-purine was recrystallized from a mixture of E/Z-isomers in order to obtain the pure E-isomer for the following rearrangement study. The structure and purity of this compound was originally determined by NMR. Further structure elucidation by SXRD supports the conclusions in our previous report (compound 14a, Kania et al., 2013).

The structure of the title compound, C9H9ClN4, has a triclinic P -1 symmetry. The asymmetric unit consists of two molecules of the title compound, with the full content of the unit cell generated by symmetry operations. The molecule has a planar bicyclic motif with an N-allylic chain oriented out of the plane described by the bicyclic main body. During the initial refinement of the structure it became apparent that the N-allylic chain is slightly disordered, with two possible spacial orientations. By using the PART instruction in SHELXL, the two possible orientations of the chain (A and B) were refined individually for the two molecules that form the asymmetric unit (residue 1 and 2). Orientation A is clearly preferred in the solid state, with the minor orientation B present in about 13% and 6.6% abundance for residue 1 and 2 respectively. The limited occupancy of the minor components prompted the use of restraints to achieve satisfactory refinement of the structure. We employed the SADI instruction in SHELXL and restrained the C10, C11B—C13B and C20, C21B—C23B bond distances in the minor components to be the same as the corresponding distances in the major components (C10, C11A—C13A and C20, C21A—C23A). This ensured realistic bond distances in the chains. Furthermore, C11B—C13B and C21B—C23B were refined isotropically since anisotropic refinement did not give realistic thermal parameters due to the low occupancy of the sites.

Experimental

The title compound was synthesized by the method described in Kania et al. (2013) (compound 14a).

Refinement

H-atoms were positioned geometrically at distances of 0.95 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), and refined using a riding model with Uiso (H)=1.2 Ueq (CH and CH2) and Uiso (H)=1.5 Ueq (CH3)

Figures

Fig. 1.

Fig. 1.

[One molecular unit of the title compound (residue 1, both A and B orientation) with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.]

Fig. 2.

Fig. 2.

[Packing diagram of the title compound viewed along the a axis.]

Fig. 3.

Fig. 3.

[Graphical projection of the packing of (E)-9-(but-2-en-1-yl)-6-chloro-9H-purine, C9H9ClN4.]

Crystal data

C9H9ClN4 Z = 4
Mr = 208.65 F(000) = 432
Triclinic, P1 Dx = 1.462 Mg m3
Hall symbol: -P 1 Melting point: 339 K
a = 8.1818 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7103 (13) Å Cell parameters from 8169 reflections
c = 13.9435 (19) Å θ = 2.5–28.8°
α = 69.642 (1)° µ = 0.37 mm1
β = 75.448 (1)° T = 100 K
γ = 67.032 (1)° Rod, colourless
V = 947.6 (2) Å3 1.13 × 0.35 × 0.22 mm

Data collection

Bruker APEXII CCD diffractometer 4428 independent reflections
Radiation source: fine-focus sealed tube 4103 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
φ and ω scans θmax = 28.8°, θmin = 1.6°
Absorption correction: numerical (SADABS; Bruker, 2005) h = −11→10
Tmin = 0.683, Tmax = 0.924 k = −12→12
10801 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.3823P] where P = (Fo2 + 2Fc2)/3
4428 reflections (Δ/σ)max = 0.001
283 parameters Δρmax = 0.34 e Å3
4 restraints Δρmin = −0.30 e Å3

Special details

Experimental. Due to the weak scattering nature of the compound, a large crystal (1.13x0.35x0.22 mm) was used to get satisfactory data for refinement.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl-1 0.80714 (4) 0.34683 (3) 0.90852 (2) 0.02519 (8)
Cl-2 0.56350 (4) 0.66115 (3) 0.58169 (2) 0.02513 (8)
N1-1 0.68069 (12) 0.64840 (11) 0.83023 (7) 0.02118 (19)
N3-1 0.37832 (12) 0.80607 (11) 0.79779 (7) 0.01992 (18)
N9-1 0.18663 (12) 0.65085 (11) 0.83852 (7) 0.01988 (18)
N7-1 0.38398 (13) 0.41103 (11) 0.89887 (7) 0.02212 (19)
N9-2 0.18425 (12) 0.33227 (11) 0.67452 (7) 0.01990 (18)
N3-2 0.49116 (12) 0.19050 (10) 0.70937 (7) 0.02115 (19)
N1-2 0.66555 (13) 0.36050 (11) 0.66514 (7) 0.02249 (19)
N7-2 0.19524 (13) 0.57777 (11) 0.61328 (7) 0.0240 (2)
C2-1 0.54905 (15) 0.78443 (13) 0.79925 (8) 0.0217 (2)
H2-1 0.5818 0.8756 0.7757 0.026*
C4-1 0.34503 (14) 0.67189 (12) 0.83172 (7) 0.0180 (2)
C10 0.01759 (15) 0.77488 (14) 0.81086 (8) 0.0229 (2)
H10A −0.0707 0.7281 0.8113 0.028*
H10B 0.0382 0.8425 0.7403 0.028*
C11A −0.05515 (18) 0.87065 (15) 0.88579 (10) 0.0221 (3) 0.870 (4)
H11A 0.0139 0.9269 0.8901 0.027* 0.870 (4)
C12A −0.21002 (18) 0.88140 (15) 0.94633 (10) 0.0218 (3) 0.870 (4)
H12A −0.2772 0.8236 0.9419 0.026* 0.870 (4)
C13A −0.2880 (4) 0.9771 (4) 1.0211 (2) 0.0282 (7) 0.870 (4)
H13A −0.3312 0.9147 1.0874 0.042* 0.870 (4)
H13B −0.3880 1.0691 0.9940 0.042* 0.870 (4)
H13C −0.1958 1.0101 1.0308 0.042* 0.870 (4)
C11B −0.1202 (11) 0.8205 (9) 0.9029 (6) 0.015 (2)* 0.130 (4)
H11B −0.1846 0.7520 0.9435 0.018* 0.130 (4)
C12B −0.1540 (11) 0.9477 (9) 0.9284 (6) 0.018 (2)* 0.130 (4)
H12B −0.1012 1.0218 0.8819 0.022* 0.130 (4)
C13B −0.267 (3) 0.987 (3) 1.0233 (14) 0.015 (4)* 0.130 (4)
H13D −0.3374 0.9172 1.0560 0.022* 0.130 (4)
H13E −0.3476 1.0951 1.0050 0.022* 0.130 (4)
H13F −0.1897 0.9748 1.0714 0.022* 0.130 (4)
C6-1 0.63857 (14) 0.51980 (12) 0.86514 (8) 0.0193 (2)
C8-1 0.21905 (16) 0.49369 (13) 0.87965 (8) 0.0230 (2)
H8-1 0.1289 0.4480 0.8932 0.028*
C5-1 0.46671 (14) 0.52249 (12) 0.86842 (8) 0.0183 (2)
C20 0.11732 (15) 0.20286 (13) 0.69402 (8) 0.0215 (2)
H20A −0.0036 0.2258 0.7343 0.026*
H20B 0.1973 0.1061 0.7357 0.026*
C21A 0.10844 (17) 0.17794 (14) 0.59490 (9) 0.0218 (3) 0.934 (3)
H21A 0.0198 0.2537 0.5533 0.026* 0.934 (3)
C22A 0.21845 (17) 0.05548 (15) 0.56322 (9) 0.0238 (3) 0.934 (3)
H22A 0.3056 −0.0205 0.6058 0.029* 0.934 (3)
C23A 0.2142 (4) 0.0289 (3) 0.4634 (2) 0.0325 (6) 0.934 (3)
H23A 0.1207 0.1167 0.4264 0.049* 0.934 (3)
H23B 0.1884 −0.0676 0.4786 0.049* 0.934 (3)
H23C 0.3307 0.0203 0.4204 0.049* 0.934 (3)
C21B 0.209 (2) 0.1272 (18) 0.6064 (11) 0.015 (4)* 0.066 (3)
H21B 0.3352 0.0771 0.5981 0.018* 0.066 (3)
C22B 0.112 (2) 0.1321 (17) 0.5430 (11) 0.015 (4)* 0.066 (3)
H22B −0.0106 0.1928 0.5380 0.018* 0.066 (3)
C23B 0.229 (5) 0.026 (4) 0.481 (3) 0.021 (8)* 0.066 (3)
H23D 0.1854 0.0602 0.4137 0.031* 0.066 (3)
H23E 0.2261 −0.0801 0.5169 0.031* 0.066 (3)
H23F 0.3515 0.0260 0.4695 0.031* 0.066 (3)
C4-2 0.35605 (14) 0.31944 (12) 0.67688 (8) 0.0183 (2)
C2-2 0.63962 (15) 0.22142 (13) 0.70213 (9) 0.0240 (2)
H2-2 0.7401 0.1342 0.7261 0.029*
C6-2 0.52708 (15) 0.48383 (12) 0.63305 (8) 0.0194 (2)
C5-2 0.36118 (14) 0.47249 (12) 0.63838 (8) 0.0188 (2)
C8-2 0.09700 (15) 0.48857 (13) 0.63580 (9) 0.0244 (2)
H8-2 −0.0256 0.5292 0.6260 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl-1 0.02417 (14) 0.02408 (14) 0.02272 (13) −0.00338 (10) −0.00490 (10) −0.00524 (10)
Cl-2 0.03597 (16) 0.02178 (14) 0.02075 (13) −0.01493 (11) −0.00189 (10) −0.00491 (10)
N1-1 0.0223 (5) 0.0252 (5) 0.0193 (4) −0.0112 (4) −0.0031 (3) −0.0061 (4)
N3-1 0.0234 (5) 0.0209 (4) 0.0174 (4) −0.0099 (4) −0.0032 (3) −0.0045 (3)
N9-1 0.0194 (4) 0.0244 (5) 0.0193 (4) −0.0103 (4) −0.0013 (3) −0.0077 (3)
N7-1 0.0272 (5) 0.0224 (5) 0.0196 (4) −0.0133 (4) 0.0011 (4) −0.0066 (4)
N9-2 0.0189 (4) 0.0207 (4) 0.0199 (4) −0.0057 (3) −0.0028 (3) −0.0063 (3)
N3-2 0.0211 (4) 0.0181 (4) 0.0223 (4) −0.0046 (4) −0.0039 (3) −0.0048 (3)
N1-2 0.0213 (4) 0.0238 (5) 0.0229 (5) −0.0082 (4) −0.0017 (4) −0.0074 (4)
N7-2 0.0250 (5) 0.0199 (5) 0.0249 (5) −0.0029 (4) −0.0077 (4) −0.0059 (4)
C2-1 0.0259 (5) 0.0226 (5) 0.0202 (5) −0.0128 (4) −0.0037 (4) −0.0045 (4)
C4-1 0.0206 (5) 0.0229 (5) 0.0134 (4) −0.0098 (4) −0.0012 (4) −0.0063 (4)
C10 0.0191 (5) 0.0302 (6) 0.0210 (5) −0.0089 (4) −0.0039 (4) −0.0075 (4)
C11A 0.0226 (7) 0.0210 (6) 0.0243 (6) −0.0085 (5) −0.0078 (5) −0.0036 (5)
C12A 0.0236 (7) 0.0205 (6) 0.0226 (6) −0.0086 (5) −0.0066 (5) −0.0037 (5)
C13A 0.0264 (11) 0.0339 (12) 0.0311 (11) −0.0128 (9) −0.0020 (7) −0.0152 (7)
C6-1 0.0216 (5) 0.0220 (5) 0.0143 (4) −0.0068 (4) −0.0027 (4) −0.0056 (4)
C8-1 0.0270 (6) 0.0263 (6) 0.0213 (5) −0.0158 (5) 0.0021 (4) −0.0091 (4)
C5-1 0.0229 (5) 0.0198 (5) 0.0138 (4) −0.0094 (4) −0.0004 (4) −0.0056 (4)
C20 0.0218 (5) 0.0242 (5) 0.0203 (5) −0.0106 (4) −0.0005 (4) −0.0066 (4)
C21A 0.0210 (6) 0.0247 (6) 0.0205 (6) −0.0097 (5) −0.0039 (4) −0.0039 (4)
C22A 0.0253 (6) 0.0246 (6) 0.0212 (6) −0.0098 (5) −0.0033 (5) −0.0043 (5)
C23A 0.0420 (11) 0.0391 (10) 0.0225 (10) −0.0165 (7) −0.0021 (8) −0.0141 (8)
C4-2 0.0199 (5) 0.0204 (5) 0.0145 (4) −0.0065 (4) −0.0012 (4) −0.0059 (4)
C2-2 0.0215 (5) 0.0204 (5) 0.0277 (6) −0.0046 (4) −0.0050 (4) −0.0056 (4)
C6-2 0.0265 (5) 0.0194 (5) 0.0140 (4) −0.0097 (4) −0.0004 (4) −0.0059 (4)
C5-2 0.0227 (5) 0.0177 (5) 0.0149 (4) −0.0048 (4) −0.0026 (4) −0.0054 (4)
C8-2 0.0218 (5) 0.0233 (5) 0.0262 (5) −0.0021 (4) −0.0072 (4) −0.0079 (4)

Geometric parameters (Å, º)

Cl-1—C6-1 1.7302 (11) C13A—H13C 0.9800
Cl-2—C6-2 1.7325 (11) C11B—C12B 1.311 (11)
N1-1—C6-1 1.3205 (14) C11B—H11B 0.9500
N1-1—C2-1 1.3483 (15) C12B—C13B 1.487 (15)
N3-1—C2-1 1.3334 (14) C12B—H12B 0.9500
N3-1—C4-1 1.3338 (13) C13B—H13D 0.9800
N9-1—C4-1 1.3644 (13) C13B—H13E 0.9800
N9-1—C8-1 1.3711 (14) C13B—H13F 0.9800
N9-1—C10 1.4687 (14) C6-1—C5-1 1.3856 (15)
N7-1—C8-1 1.3130 (15) C8-1—H8-1 0.9500
N7-1—C5-1 1.3847 (13) C20—C21A 1.5069 (15)
N9-2—C4-2 1.3697 (14) C20—C21B 1.526 (15)
N9-2—C8-2 1.3721 (14) C20—H20A 0.9900
N9-2—C20 1.4756 (14) C20—H20B 0.9900
N3-2—C4-2 1.3311 (14) C21A—C22A 1.3227 (18)
N3-2—C2-2 1.3333 (15) C21A—H21A 0.9500
N1-2—C6-2 1.3195 (15) C22A—C23A 1.513 (3)
N1-2—C2-2 1.3486 (15) C22A—H22A 0.9500
N7-2—C8-2 1.3123 (15) C23A—H23A 0.9800
N7-2—C5-2 1.3848 (14) C23A—H23B 0.9800
C2-1—H2-1 0.9500 C23A—H23C 0.9800
C4-1—C5-1 1.4035 (15) C21B—C22B 1.308 (15)
C10—C11A 1.4975 (17) C21B—H21B 0.9500
C10—C11B 1.547 (8) C22B—C23B 1.475 (18)
C10—H10A 0.9900 C22B—H22B 0.9500
C10—H10B 0.9900 C23B—H23D 0.9800
C11A—C12A 1.323 (2) C23B—H23E 0.9800
C11A—H11A 0.9500 C23B—H23F 0.9800
C12A—C13A 1.494 (3) C4-2—C5-2 1.4075 (15)
C12A—H12A 0.9500 C2-2—H2-2 0.9500
C13A—H13A 0.9800 C6-2—C5-2 1.3857 (15)
C13A—H13B 0.9800 C8-2—H8-2 0.9500
C6-1—N1-1—C2-1 117.58 (9) N1-1—C6-1—C5-1 121.81 (10)
C2-1—N3-1—C4-1 111.92 (9) N1-1—C6-1—Cl-1 117.06 (8)
C4-1—N9-1—C8-1 105.55 (9) C5-1—C6-1—Cl-1 121.12 (8)
C4-1—N9-1—C10 125.75 (9) N7-1—C8-1—N9-1 114.96 (10)
C8-1—N9-1—C10 128.65 (9) N7-1—C8-1—H8-1 122.5
C8-1—N7-1—C5-1 103.03 (9) N9-1—C8-1—H8-1 122.5
C4-2—N9-2—C8-2 105.39 (9) N7-1—C5-1—C6-1 135.09 (10)
C4-2—N9-2—C20 126.48 (9) N7-1—C5-1—C4-1 110.75 (9)
C8-2—N9-2—C20 127.49 (9) C6-1—C5-1—C4-1 114.16 (9)
C4-2—N3-2—C2-2 111.78 (9) N9-2—C20—C21A 111.69 (9)
C6-2—N1-2—C2-2 116.99 (10) N9-2—C20—C21B 106.9 (6)
C8-2—N7-2—C5-2 103.20 (9) N9-2—C20—H20A 109.3
N3-1—C2-1—N1-1 127.67 (10) C21A—C20—H20A 109.3
N3-1—C2-1—H2-1 116.2 C21B—C20—H20A 135.2
N1-1—C2-1—H2-1 116.2 N9-2—C20—H20B 109.3
N3-1—C4-1—N9-1 127.49 (10) C21A—C20—H20B 109.3
N3-1—C4-1—C5-1 126.81 (10) C21B—C20—H20B 83.6
N9-1—C4-1—C5-1 105.70 (9) H20A—C20—H20B 107.9
N9-1—C10—C11A 110.39 (9) C22A—C21A—C20 123.02 (11)
N9-1—C10—C11B 115.3 (3) C22A—C21A—H21A 118.5
N9-1—C10—H10A 109.6 C20—C21A—H21A 118.5
C11A—C10—H10A 109.6 C21A—C22A—C23A 124.07 (14)
C11B—C10—H10A 80.2 C21A—C22A—H22A 118.0
N9-1—C10—H10B 109.6 C23A—C22A—H22A 118.0
C11A—C10—H10B 109.6 C22B—C21B—C20 119.2 (14)
C11B—C10—H10B 128.2 C22B—C21B—H21B 120.4
H10A—C10—H10B 108.1 C20—C21B—H21B 120.4
C12A—C11A—C10 123.78 (12) C21B—C22B—C23B 107.1 (19)
C12A—C11A—H11A 118.1 C21B—C22B—H22B 126.5
C10—C11A—H11A 118.1 C23B—C22B—H22B 126.5
C11A—C12A—C13A 125.33 (17) N3-2—C4-2—N9-2 127.88 (10)
C11A—C12A—H12A 117.3 N3-2—C4-2—C5-2 126.46 (10)
C13A—C12A—H12A 117.3 N9-2—C4-2—C5-2 105.66 (9)
C12B—C11B—C10 124.2 (8) N3-2—C2-2—N1-2 128.37 (10)
C12B—C11B—H11B 117.9 N3-2—C2-2—H2-2 115.8
C10—C11B—H11B 117.9 N1-2—C2-2—H2-2 115.8
C11B—C12B—C13B 126.3 (11) N1-2—C6-2—C5-2 121.91 (10)
C11B—C12B—H12B 116.9 N1-2—C6-2—Cl-2 116.70 (8)
C13B—C12B—H12B 116.9 C5-2—C6-2—Cl-2 121.39 (8)
C12B—C13B—H13D 109.5 N7-2—C5-2—C6-2 134.92 (10)
C12B—C13B—H13E 109.5 N7-2—C5-2—C4-2 110.64 (9)
H13D—C13B—H13E 109.5 C6-2—C5-2—C4-2 114.43 (9)
C12B—C13B—H13F 109.5 N7-2—C8-2—N9-2 115.10 (10)
H13D—C13B—H13F 109.5 N7-2—C8-2—H8-2 122.4
H13E—C13B—H13F 109.5 N9-2—C8-2—H8-2 122.4

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2100).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. CambridgeSoft (2009). ChemBioDraw Ultra CambridgeSoft Corporation, Cambridge, Massachusetts, USA.
  5. Kania, J. & Gundersen, L.-L. (2013). Eur. J. Org. Chem. pp. 2008–2019.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010416/lr2100sup1.cif

e-69-0o849-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010416/lr2100Isup2.hkl

e-69-0o849-Isup2.hkl (216.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813010416/lr2100Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES