Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):o854–o855. doi: 10.1107/S1600536813011537

Ethyl 1′′-benzyl-2′′-oxo-2′,3′,5′,6′,7′,7a’-hexa­hydro-1′H-di­spiro­[indeno­[1,2-b]quinoxaline-11,2′-pyrrolizine-3′,3′′-indoline]-1′-carboxyl­ate monohydrate

Piskala Subburaman Kannan a, Srinu Lanka b, Sathiah Thennarasu b, Gopal Vimala c, Arunachalathevar SubbiahPandi c,*
PMCID: PMC3684937  PMID: 23795039

Abstract

In the title compound, C38H32N4O3·H2O, the quinoxaline–indene and pyrrolizine systems are essentially planar, with maximum deviations from their mean planes of 0.162 and 0.563 Å, respectively. The pyrrolizine ring forms dihedral angles of 88.53 (5) and 89.95 (8)° with the quinoxaline–indene system and the indoline ring, respectively. The central pyrrolidine ring has an envelope conformation with the C atom bearing the quinoxaline-indene system as the flap. The pyrrolidine ring of the indole system adopts an envelope conformation with the C atom bonded to the pyrrolizine ring N atom as the flap. The five-membered ring attached to the central pyrolidine ring adopts a twisted conformation. In the crystal, O—H⋯N and O—H⋯O hydrogen bonds between water mol­ecules and pyrrolizine N and carbonyl O atoms together with C—H⋯O inter­actions result in chains along [100].

Related literature  

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); Saeedi et al. (2010); Dandia et al. (2011); He et al. (2003). For uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Srinivasan et al. (2012). For ring conformations, see: Cremer & Pople (1975). For details of the synthesis, see: Azizian et al. (2005). graphic file with name e-69-0o854-scheme1.jpg

Experimental  

Crystal data  

  • C38H32N4O3·H2O

  • M r = 610.69

  • Triclinic, Inline graphic

  • a = 11.0527 (3) Å

  • b = 11.5834 (3) Å

  • c = 12.2015 (3) Å

  • α = 97.370 (1)°

  • β = 92.037 (1)°

  • γ = 96.810 (1)°

  • V = 1536.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.979, T max = 0.984

  • 21165 measured reflections

  • 5410 independent reflections

  • 4751 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.02

  • 5410 reflections

  • 422 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011537/bx2437sup1.cif

e-69-0o854-sup1.cif (30.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011537/bx2437Isup2.hkl

e-69-0o854-Isup2.hkl (259.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.99 (2) 2.03 (2) 2.996 (2) 164 (2)
O4—H4B⋯O1i 0.99 (2) 2.31 (2) 3.222 (2) 154 (2)
C2—H2⋯O1ii 0.93 2.50 3.393 (2) 162
C24—H24A⋯O4iii 0.97 2.56 3.495 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Spiro compounds have received considerable interest due to their highly biological properties (Pradhan et al., 2006); Thus more and more novel spiroheterocycle compounds have been prepared and characterized (Saeedi et al., 2010); Dandia et al., 2011). In addition , quinoxaline derivatives also showed various biological activites (He et al., 2003).

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives shown antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of great medicinal properties, we have undertaken the three dimensional structure of the title compound. In view of these importance and continuation of our work on the crystal structure analyis of pyrrolidine and quinoxaline derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in Fig. 1. The quinoxaline-indene systems (C1-C15/N1-N2) and pyrrolizine system (C15-C16/C34-C38/N4), are essentially planar, with maximum deviations from mean plane of -0.162 Å for C3 atom and -0.563 Å for C36 atom, respectively.

The pyrrolizine ring (C15-C16/C34-C38/N4) forms a dihedral angles of 88.53 (5) and 89.95 (6)° with quinoxaline-indene systems and indole ring (C16-C23/N3) respectively. This clearly shows that the quinoxaline-indene ring system and indole rings are almost perpendicular to the pyrrolizine ring. The central pyrrolidine ring (C15-C16/C34-C35/N4) is enveloped on C15 with the puckering parameters of q2 = 0.4478 (2) Å, φ = 246.90 (2)° (Cremer & Pople, 1975). The pyrrolidine (C16-C18/C23/N3) of indole ring adopts envelope conformation on C16 with the puckering parameters of q2 = 0.0729 (2) Å, φ = 243.08 (1)°. The five membered ring (C35-C38/N4) attached with the central pyrolidine ring adopts twisted conformation on C36-C37 with the puckering parameters of q2 = 0.3767 (2) Å, φ = 92.96 (3)°.

In the crystal intra and intermolcular O-H···O hydrogen bonds between water molecules and pyrrolizine fragment N and carbonyl group O atoms of organic compound together with C-H···O interactions result in one-dimensional supramolecular structure.

Experimental

Benzyl Isatin( 0.25 mmol), L-proline ( 0.3 mmol), Ethyl Indeno[1,2-b] quinoxalin-11-ylideneacetate( 0.25 mmol) (Azizian et al., 2005) in ethanol refluxed for 60 min. The progress of the reaction was followed by TLC. After completion, the solvent was removed under reduced pressure and the resulting crude product was subjected to column chromatography. The product was recrystallised from methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution of the title compound in methanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing viewed down the c axis. Dashed lines shows the intermolecular O-H···O and C-H···O hydrogen bonds.

Crystal data

C38H32N4O3·H2O Z = 2
Mr = 610.69 F(000) = 644
Triclinic, P1 Dx = 1.320 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.0527 (3) Å Cell parameters from 5410 reflections
b = 11.5834 (3) Å θ = 1.7–25.0°
c = 12.2015 (3) Å µ = 0.09 mm1
α = 97.370 (1)° T = 293 K
β = 92.037 (1)° Block, colourless
γ = 96.810 (1)° 0.25 × 0.22 × 0.19 mm
V = 1536.25 (7) Å3

Data collection

Bruker APEXII CCD area detector diffractometer 5410 independent reflections
Radiation source: fine-focus sealed tube 4751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.979, Tmax = 0.984 k = −13→13
21165 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.5303P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5410 reflections Δρmax = 0.27 e Å3
422 parameters Δρmin = −0.31 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0134 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.33289 (14) 0.60474 (13) 0.97720 (12) 0.0363 (3)
C2 0.27983 (16) 0.53695 (15) 0.88023 (13) 0.0472 (4)
H2 0.1967 0.5108 0.8754 0.057*
C3 0.34944 (18) 0.50896 (17) 0.79262 (14) 0.0547 (5)
H3 0.3132 0.4640 0.7286 0.066*
C4 0.47454 (18) 0.54734 (16) 0.79835 (15) 0.0540 (5)
H4 0.5207 0.5287 0.7378 0.065*
C5 0.52933 (16) 0.61179 (15) 0.89196 (14) 0.0487 (4)
H5 0.6127 0.6364 0.8951 0.058*
C6 0.46058 (14) 0.64146 (13) 0.98405 (13) 0.0383 (3)
C7 0.31818 (13) 0.69142 (12) 1.15216 (11) 0.0312 (3)
C8 0.44754 (13) 0.72317 (12) 1.16075 (12) 0.0338 (3)
C9 0.48255 (13) 0.77731 (12) 1.27325 (12) 0.0347 (3)
C10 0.59802 (14) 0.81928 (14) 1.32171 (14) 0.0419 (4)
H10 0.6670 0.8174 1.2803 0.050*
C11 0.60769 (15) 0.86350 (14) 1.43215 (14) 0.0438 (4)
H11 0.6839 0.8924 1.4660 0.053*
C12 0.50493 (15) 0.86526 (13) 1.49326 (13) 0.0420 (4)
H12 0.5134 0.8941 1.5682 0.050*
C13 0.38954 (14) 0.82503 (13) 1.44535 (13) 0.0382 (3)
H13 0.3210 0.8279 1.4873 0.046*
C14 0.37783 (13) 0.78043 (12) 1.33380 (12) 0.0322 (3)
C15 0.26261 (12) 0.73456 (12) 1.26003 (11) 0.0306 (3)
C16 0.17216 (12) 0.64178 (12) 1.30948 (11) 0.0311 (3)
C17 0.08006 (12) 0.57554 (12) 1.21443 (12) 0.0324 (3)
C18 0.22870 (12) 0.54088 (12) 1.34875 (12) 0.0321 (3)
C19 0.30618 (14) 0.53514 (14) 1.43864 (13) 0.0385 (3)
H19 0.3328 0.6020 1.4881 0.046*
C20 0.34386 (15) 0.42751 (15) 1.45399 (14) 0.0436 (4)
H20 0.3963 0.4227 1.5141 0.052*
C21 0.30422 (15) 0.32808 (14) 1.38100 (14) 0.0446 (4)
H21 0.3322 0.2575 1.3915 0.054*
C22 0.22365 (14) 0.33140 (13) 1.29237 (13) 0.0409 (4)
H22 0.1954 0.2640 1.2441 0.049*
C23 0.18692 (13) 0.43837 (12) 1.27831 (12) 0.0331 (3)
C24 0.04034 (15) 0.37286 (14) 1.11225 (13) 0.0426 (4)
H24A 0.1019 0.3390 1.0683 0.051*
H24B −0.0096 0.4104 1.0639 0.051*
C25 −0.03895 (16) 0.27579 (15) 1.15617 (15) 0.0481 (4)
C26 −0.10008 (19) 0.2954 (2) 1.25144 (18) 0.0668 (6)
H26 −0.0929 0.3705 1.2906 0.080*
C27 −0.1720 (3) 0.2049 (3) 1.2897 (3) 0.1052 (10)
H27 −0.2130 0.2196 1.3544 0.126*
C28 −0.1837 (3) 0.0943 (3) 1.2338 (4) 0.1271 (15)
H28 −0.2319 0.0335 1.2602 0.153*
C29 −0.1241 (4) 0.0736 (2) 1.1390 (4) 0.1244 (14)
H29 −0.1321 −0.0018 1.1004 0.149*
C30 −0.0512 (3) 0.16379 (19) 1.0990 (2) 0.0880 (8)
H30 −0.0109 0.1487 1.0340 0.106*
C31 0.4884 (3) 1.0676 (3) 1.1530 (2) 0.0950 (8)
H31A 0.5302 1.1394 1.1343 0.143*
H31B 0.5261 1.0025 1.1189 0.143*
H31C 0.4930 1.0690 1.2319 0.143*
C32 0.3595 (2) 1.05536 (18) 1.1130 (2) 0.0722 (6)
H32A 0.3219 1.1220 1.1463 0.087*
H32B 0.3549 1.0548 1.0334 0.087*
C33 0.24386 (15) 0.95123 (13) 1.23835 (13) 0.0413 (4)
C34 0.17726 (13) 0.83303 (12) 1.25340 (12) 0.0347 (3)
H34 0.1176 0.8079 1.1911 0.042*
C35 0.11039 (14) 0.83350 (13) 1.36057 (13) 0.0382 (3)
H35 0.1548 0.8927 1.4170 0.046*
C36 −0.02444 (16) 0.84985 (17) 1.35917 (17) 0.0558 (5)
H36A −0.0356 0.9317 1.3779 0.067*
H36B −0.0648 0.8201 1.2875 0.067*
C37 −0.07122 (18) 0.77731 (19) 1.44790 (19) 0.0652 (5)
H37A −0.0531 0.8207 1.5212 0.078*
H37B −0.1586 0.7547 1.4375 0.078*
C38 −0.00303 (15) 0.67035 (16) 1.43219 (15) 0.0481 (4)
H38A 0.0062 0.6383 1.5012 0.058*
H38B −0.0456 0.6099 1.3772 0.058*
N1 0.26028 (11) 0.63329 (11) 1.06378 (10) 0.0354 (3)
N2 0.51881 (11) 0.70233 (11) 1.07875 (11) 0.0398 (3)
N3 0.10044 (11) 0.46128 (10) 1.19862 (10) 0.0352 (3)
N4 0.11669 (11) 0.71534 (11) 1.39436 (10) 0.0352 (3)
O1 0.00192 (9) 0.61759 (9) 1.16524 (9) 0.0415 (3)
O2 0.29325 (13) 0.94730 (11) 1.14075 (11) 0.0604 (4)
O3 0.25075 (15) 1.03746 (11) 1.30440 (12) 0.0722 (4)
O4 0.79032 (17) 0.76464 (16) 1.09100 (18) 0.0942 (6)
H4A 0.7036 (15) 0.730 (2) 1.091 (2) 0.113*
H4B 0.832 (2) 0.701 (2) 1.116 (2) 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0393 (8) 0.0371 (8) 0.0333 (8) 0.0066 (6) 0.0053 (6) 0.0052 (6)
C2 0.0447 (9) 0.0545 (10) 0.0399 (9) 0.0048 (7) 0.0013 (7) −0.0019 (7)
C3 0.0626 (11) 0.0619 (11) 0.0365 (9) 0.0074 (9) 0.0049 (8) −0.0054 (8)
C4 0.0621 (11) 0.0593 (11) 0.0406 (9) 0.0089 (9) 0.0191 (8) 0.0016 (8)
C5 0.0465 (9) 0.0528 (10) 0.0464 (10) 0.0018 (8) 0.0176 (8) 0.0050 (8)
C6 0.0406 (8) 0.0363 (8) 0.0384 (8) 0.0035 (6) 0.0085 (6) 0.0066 (6)
C7 0.0335 (7) 0.0279 (7) 0.0328 (7) 0.0038 (6) 0.0028 (6) 0.0059 (6)
C8 0.0332 (7) 0.0310 (7) 0.0374 (8) 0.0023 (6) 0.0045 (6) 0.0061 (6)
C9 0.0344 (8) 0.0301 (7) 0.0391 (8) 0.0021 (6) 0.0006 (6) 0.0046 (6)
C10 0.0332 (8) 0.0401 (8) 0.0507 (9) 0.0014 (6) −0.0001 (7) 0.0037 (7)
C11 0.0389 (8) 0.0384 (8) 0.0514 (10) 0.0023 (7) −0.0112 (7) 0.0015 (7)
C12 0.0499 (9) 0.0355 (8) 0.0387 (8) 0.0057 (7) −0.0084 (7) 0.0004 (6)
C13 0.0410 (8) 0.0358 (8) 0.0371 (8) 0.0046 (6) 0.0024 (6) 0.0019 (6)
C14 0.0334 (7) 0.0265 (7) 0.0361 (8) 0.0021 (5) −0.0002 (6) 0.0039 (6)
C15 0.0310 (7) 0.0286 (7) 0.0317 (7) 0.0028 (6) 0.0018 (6) 0.0026 (6)
C16 0.0294 (7) 0.0313 (7) 0.0322 (7) 0.0032 (6) 0.0021 (6) 0.0035 (6)
C17 0.0285 (7) 0.0349 (7) 0.0339 (7) 0.0003 (6) 0.0037 (6) 0.0074 (6)
C18 0.0290 (7) 0.0333 (7) 0.0346 (7) 0.0031 (6) 0.0051 (6) 0.0065 (6)
C19 0.0377 (8) 0.0400 (8) 0.0374 (8) 0.0020 (6) 0.0003 (6) 0.0065 (6)
C20 0.0402 (8) 0.0497 (9) 0.0443 (9) 0.0073 (7) −0.0005 (7) 0.0174 (7)
C21 0.0446 (9) 0.0382 (8) 0.0552 (10) 0.0110 (7) 0.0062 (7) 0.0162 (7)
C22 0.0435 (9) 0.0325 (8) 0.0467 (9) 0.0045 (6) 0.0065 (7) 0.0044 (6)
C23 0.0326 (7) 0.0338 (7) 0.0335 (7) 0.0027 (6) 0.0059 (6) 0.0065 (6)
C24 0.0497 (9) 0.0412 (9) 0.0341 (8) 0.0005 (7) 0.0010 (7) −0.0011 (7)
C25 0.0477 (9) 0.0398 (9) 0.0538 (10) −0.0036 (7) −0.0129 (8) 0.0074 (7)
C26 0.0652 (13) 0.0685 (13) 0.0669 (13) −0.0072 (10) 0.0096 (10) 0.0227 (10)
C27 0.0797 (17) 0.122 (3) 0.120 (2) −0.0198 (17) 0.0124 (16) 0.068 (2)
C28 0.089 (2) 0.103 (3) 0.190 (4) −0.0445 (19) −0.033 (2) 0.087 (3)
C29 0.126 (3) 0.0467 (14) 0.188 (4) −0.0303 (16) −0.045 (3) 0.0187 (19)
C30 0.1015 (19) 0.0468 (12) 0.1050 (19) −0.0101 (12) −0.0135 (15) −0.0073 (12)
C31 0.0943 (19) 0.0915 (18) 0.100 (2) −0.0146 (15) 0.0232 (15) 0.0334 (15)
C32 0.0932 (17) 0.0504 (11) 0.0784 (14) 0.0043 (11) 0.0299 (12) 0.0262 (10)
C33 0.0472 (9) 0.0336 (8) 0.0441 (9) 0.0077 (7) 0.0030 (7) 0.0066 (7)
C34 0.0356 (8) 0.0308 (7) 0.0378 (8) 0.0063 (6) 0.0006 (6) 0.0038 (6)
C35 0.0392 (8) 0.0346 (8) 0.0413 (8) 0.0092 (6) 0.0052 (6) 0.0022 (6)
C36 0.0458 (10) 0.0592 (11) 0.0681 (12) 0.0221 (8) 0.0132 (9) 0.0131 (9)
C37 0.0484 (11) 0.0759 (13) 0.0773 (14) 0.0196 (10) 0.0252 (10) 0.0170 (11)
C38 0.0409 (9) 0.0546 (10) 0.0496 (10) 0.0036 (7) 0.0150 (7) 0.0093 (8)
N1 0.0351 (6) 0.0369 (7) 0.0336 (7) 0.0039 (5) 0.0034 (5) 0.0030 (5)
N2 0.0353 (7) 0.0422 (7) 0.0405 (7) −0.0001 (5) 0.0079 (6) 0.0035 (6)
N3 0.0369 (7) 0.0322 (6) 0.0347 (6) −0.0002 (5) −0.0005 (5) 0.0030 (5)
N4 0.0344 (6) 0.0350 (6) 0.0365 (7) 0.0054 (5) 0.0081 (5) 0.0039 (5)
O1 0.0350 (6) 0.0433 (6) 0.0458 (6) 0.0045 (5) −0.0063 (5) 0.0076 (5)
O2 0.0844 (9) 0.0431 (7) 0.0546 (8) 0.0008 (6) 0.0227 (7) 0.0114 (6)
O3 0.1080 (12) 0.0355 (7) 0.0684 (9) −0.0052 (7) 0.0259 (8) −0.0036 (6)
O4 0.0750 (11) 0.0835 (12) 0.1217 (15) −0.0009 (9) 0.0213 (11) 0.0098 (11)

Geometric parameters (Å, º)

C1—N1 1.3795 (19) C22—H22 0.9300
C1—C2 1.401 (2) C23—N3 1.4106 (19)
C1—C6 1.421 (2) C24—N3 1.4536 (19)
C2—C3 1.367 (2) C24—C25 1.508 (2)
C2—H2 0.9300 C24—H24A 0.9700
C3—C4 1.398 (3) C24—H24B 0.9700
C3—H3 0.9300 C25—C26 1.372 (3)
C4—C5 1.361 (3) C25—C30 1.381 (3)
C4—H4 0.9300 C26—C27 1.380 (3)
C5—C6 1.408 (2) C26—H26 0.9300
C5—H5 0.9300 C27—C28 1.362 (5)
C6—N2 1.370 (2) C27—H27 0.9300
C7—N1 1.2994 (19) C28—C29 1.361 (6)
C7—C8 1.430 (2) C28—H28 0.9300
C7—C15 1.5234 (19) C29—C30 1.392 (5)
C8—N2 1.3111 (19) C29—H29 0.9300
C8—C9 1.453 (2) C30—H30 0.9300
C9—C10 1.393 (2) C31—C32 1.475 (4)
C9—C14 1.397 (2) C31—H31A 0.9600
C10—C11 1.375 (2) C31—H31B 0.9600
C10—H10 0.9300 C31—H31C 0.9600
C11—C12 1.381 (2) C32—O2 1.458 (2)
C11—H11 0.9300 C32—H32A 0.9700
C12—C13 1.386 (2) C32—H32B 0.9700
C12—H12 0.9300 C33—O3 1.193 (2)
C13—C14 1.388 (2) C33—O2 1.325 (2)
C13—H13 0.9300 C33—C34 1.512 (2)
C14—C15 1.5329 (19) C34—C35 1.524 (2)
C15—C34 1.5719 (19) C34—H34 0.9800
C15—C16 1.5725 (19) C35—N4 1.4879 (19)
C16—N4 1.4550 (18) C35—C36 1.524 (2)
C16—C18 1.510 (2) C35—H35 0.9800
C16—C17 1.5725 (19) C36—C37 1.522 (3)
C17—O1 1.2171 (17) C36—H36A 0.9700
C17—N3 1.3593 (19) C36—H36B 0.9700
C18—C19 1.381 (2) C37—C38 1.520 (3)
C18—C23 1.393 (2) C37—H37A 0.9700
C19—C20 1.393 (2) C37—H37B 0.9700
C19—H19 0.9300 C38—N4 1.4756 (19)
C20—C21 1.379 (2) C38—H38A 0.9700
C20—H20 0.9300 C38—H38B 0.9700
C21—C22 1.384 (2) O4—H4A 0.997 (17)
C21—H21 0.9300 O4—H4B 0.981 (16)
C22—C23 1.378 (2)
N1—C1—C2 119.29 (14) C25—C24—H24A 108.9
N1—C1—C6 121.71 (13) N3—C24—H24B 108.9
C2—C1—C6 119.00 (14) C25—C24—H24B 108.9
C3—C2—C1 120.44 (16) H24A—C24—H24B 107.7
C3—C2—H2 119.8 C26—C25—C30 118.8 (2)
C1—C2—H2 119.8 C26—C25—C24 121.92 (16)
C2—C3—C4 120.58 (16) C30—C25—C24 119.30 (19)
C2—C3—H3 119.7 C25—C26—C27 120.7 (3)
C4—C3—H3 119.7 C25—C26—H26 119.7
C5—C4—C3 120.48 (16) C27—C26—H26 119.7
C5—C4—H4 119.8 C28—C27—C26 120.6 (3)
C3—C4—H4 119.8 C28—C27—H27 119.7
C4—C5—C6 120.45 (16) C26—C27—H27 119.7
C4—C5—H5 119.8 C29—C28—C27 119.3 (3)
C6—C5—H5 119.8 C29—C28—H28 120.3
N2—C6—C5 119.23 (14) C27—C28—H28 120.3
N2—C6—C1 121.73 (13) C28—C29—C30 120.9 (3)
C5—C6—C1 119.02 (15) C28—C29—H29 119.6
N1—C7—C8 123.16 (13) C30—C29—H29 119.6
N1—C7—C15 126.77 (12) C25—C30—C29 119.7 (3)
C8—C7—C15 110.07 (12) C25—C30—H30 120.2
N2—C8—C7 123.60 (13) C29—C30—H30 120.2
N2—C8—C9 127.85 (13) C32—C31—H31A 109.5
C7—C8—C9 108.53 (12) C32—C31—H31B 109.5
C10—C9—C14 121.61 (14) H31A—C31—H31B 109.5
C10—C9—C8 129.58 (14) C32—C31—H31C 109.5
C14—C9—C8 108.80 (12) H31A—C31—H31C 109.5
C11—C10—C9 118.45 (15) H31B—C31—H31C 109.5
C11—C10—H10 120.8 O2—C32—C31 110.82 (19)
C9—C10—H10 120.8 O2—C32—H32A 109.5
C10—C11—C12 120.43 (15) C31—C32—H32A 109.5
C10—C11—H11 119.8 O2—C32—H32B 109.5
C12—C11—H11 119.8 C31—C32—H32B 109.5
C11—C12—C13 121.47 (15) H32A—C32—H32B 108.1
C11—C12—H12 119.3 O3—C33—O2 123.94 (15)
C13—C12—H12 119.3 O3—C33—C34 125.11 (15)
C12—C13—C14 118.96 (15) O2—C33—C34 110.94 (13)
C12—C13—H13 120.5 C33—C34—C35 113.68 (12)
C14—C13—H13 120.5 C33—C34—C15 114.17 (12)
C13—C14—C9 119.07 (13) C35—C34—C15 103.24 (11)
C13—C14—C15 129.73 (13) C33—C34—H34 108.5
C9—C14—C15 111.17 (12) C35—C34—H34 108.5
C7—C15—C14 100.96 (11) C15—C34—H34 108.5
C7—C15—C34 115.65 (11) N4—C35—C36 105.46 (13)
C14—C15—C34 111.25 (11) N4—C35—C34 105.26 (11)
C7—C15—C16 116.12 (11) C36—C35—C34 119.23 (14)
C14—C15—C16 114.20 (11) N4—C35—H35 108.8
C34—C15—C16 99.28 (11) C36—C35—H35 108.8
N4—C16—C18 115.33 (12) C34—C35—H35 108.8
N4—C16—C17 114.34 (11) C37—C36—C35 102.07 (14)
C18—C16—C17 101.24 (11) C37—C36—H36A 111.4
N4—C16—C15 101.90 (11) C35—C36—H36A 111.4
C18—C16—C15 115.48 (11) C37—C36—H36B 111.4
C17—C16—C15 108.92 (11) C35—C36—H36B 111.4
O1—C17—N3 125.59 (13) H36A—C36—H36B 109.2
O1—C17—C16 126.48 (13) C38—C37—C36 104.06 (14)
N3—C17—C16 107.90 (11) C38—C37—H37A 110.9
C19—C18—C23 119.19 (14) C36—C37—H37A 110.9
C19—C18—C16 131.86 (13) C38—C37—H37B 110.9
C23—C18—C16 108.92 (12) C36—C37—H37B 110.9
C18—C19—C20 118.91 (15) H37A—C37—H37B 109.0
C18—C19—H19 120.5 N4—C38—C37 104.17 (14)
C20—C19—H19 120.5 N4—C38—H38A 110.9
C21—C20—C19 120.68 (15) C37—C38—H38A 110.9
C21—C20—H20 119.7 N4—C38—H38B 110.9
C19—C20—H20 119.7 C37—C38—H38B 110.9
C20—C21—C22 121.23 (15) H38A—C38—H38B 108.9
C20—C21—H21 119.4 C7—N1—C1 114.98 (12)
C22—C21—H21 119.4 C8—N2—C6 114.67 (13)
C23—C22—C21 117.45 (15) C17—N3—C23 111.20 (12)
C23—C22—H22 121.3 C17—N3—C24 124.95 (13)
C21—C22—H22 121.3 C23—N3—C24 123.85 (12)
C22—C23—C18 122.46 (14) C16—N4—C38 118.33 (12)
C22—C23—N3 127.28 (14) C16—N4—C35 110.13 (11)
C18—C23—N3 110.17 (12) C38—N4—C35 109.36 (12)
N3—C24—C25 113.45 (13) C33—O2—C32 117.59 (15)
N3—C24—H24A 108.9 H4A—O4—H4B 100.3 (17)
N1—C1—C2—C3 179.00 (15) C21—C22—C23—C18 0.6 (2)
C6—C1—C2—C3 −1.5 (2) C21—C22—C23—N3 −175.82 (14)
C1—C2—C3—C4 0.1 (3) C19—C18—C23—C22 −2.5 (2)
C2—C3—C4—C5 1.0 (3) C16—C18—C23—C22 179.33 (13)
C3—C4—C5—C6 −0.5 (3) C19—C18—C23—N3 174.42 (12)
C4—C5—C6—N2 177.39 (16) C16—C18—C23—N3 −3.72 (16)
C4—C5—C6—C1 −1.0 (2) N3—C24—C25—C26 32.7 (2)
N1—C1—C6—N2 3.1 (2) N3—C24—C25—C30 −147.57 (19)
C2—C1—C6—N2 −176.36 (14) C30—C25—C26—C27 0.3 (3)
N1—C1—C6—C5 −178.56 (14) C24—C25—C26—C27 180.0 (2)
C2—C1—C6—C5 2.0 (2) C25—C26—C27—C28 0.1 (4)
N1—C7—C8—N2 3.8 (2) C26—C27—C28—C29 −0.4 (5)
C15—C7—C8—N2 −176.70 (13) C27—C28—C29—C30 0.3 (5)
N1—C7—C8—C9 −174.74 (13) C26—C25—C30—C29 −0.3 (4)
C15—C7—C8—C9 4.75 (16) C24—C25—C30—C29 179.9 (2)
N2—C8—C9—C10 −0.4 (3) C28—C29—C30—C25 0.1 (5)
C7—C8—C9—C10 178.08 (15) O3—C33—C34—C35 3.5 (2)
N2—C8—C9—C14 −178.92 (14) O2—C33—C34—C35 −175.81 (13)
C7—C8—C9—C14 −0.44 (16) O3—C33—C34—C15 −114.54 (19)
C14—C9—C10—C11 0.6 (2) O2—C33—C34—C15 66.11 (17)
C8—C9—C10—C11 −177.71 (15) C7—C15—C34—C33 −70.91 (16)
C9—C10—C11—C12 0.4 (2) C14—C15—C34—C33 43.49 (16)
C10—C11—C12—C13 −1.3 (2) C16—C15—C34—C33 164.10 (12)
C11—C12—C13—C14 1.0 (2) C7—C15—C34—C35 165.19 (12)
C12—C13—C14—C9 0.1 (2) C14—C15—C34—C35 −80.41 (14)
C12—C13—C14—C15 −177.74 (14) C16—C15—C34—C35 40.20 (13)
C10—C9—C14—C13 −0.9 (2) C33—C34—C35—N4 −147.05 (12)
C8—C9—C14—C13 177.77 (13) C15—C34—C35—N4 −22.83 (14)
C10—C9—C14—C15 177.30 (13) C33—C34—C35—C36 94.96 (17)
C8—C9—C14—C15 −4.04 (16) C15—C34—C35—C36 −140.83 (14)
N1—C7—C15—C14 172.83 (13) N4—C35—C36—C37 29.94 (18)
C8—C7—C15—C14 −6.64 (14) C34—C35—C36—C37 147.83 (16)
N1—C7—C15—C34 −67.00 (18) C35—C36—C37—C38 −38.7 (2)
C8—C7—C15—C34 113.53 (13) C36—C37—C38—N4 32.9 (2)
N1—C7—C15—C16 48.77 (19) C8—C7—N1—C1 −0.5 (2)
C8—C7—C15—C16 −130.70 (12) C15—C7—N1—C1 −179.95 (13)
C13—C14—C15—C7 −175.60 (14) C2—C1—N1—C7 176.80 (14)
C9—C14—C15—C7 6.46 (14) C6—C1—N1—C7 −2.6 (2)
C13—C14—C15—C34 61.14 (19) C7—C8—N2—C6 −3.3 (2)
C9—C14—C15—C34 −116.80 (13) C9—C8—N2—C6 175.00 (14)
C13—C14—C15—C16 −50.2 (2) C5—C6—N2—C8 −178.33 (14)
C9—C14—C15—C16 131.82 (12) C1—C6—N2—C8 0.0 (2)
C7—C15—C16—N4 −167.83 (11) O1—C17—N3—C23 −172.47 (13)
C14—C15—C16—N4 75.26 (13) C16—C17—N3—C23 5.77 (15)
C34—C15—C16—N4 −43.17 (12) O1—C17—N3—C24 6.7 (2)
C7—C15—C16—C18 66.38 (16) C16—C17—N3—C24 −175.06 (12)
C14—C15—C16—C18 −50.53 (16) C22—C23—N3—C17 175.30 (14)
C34—C15—C16—C18 −168.96 (11) C18—C23—N3—C17 −1.47 (16)
C7—C15—C16—C17 −46.67 (15) C22—C23—N3—C24 −3.9 (2)
C14—C15—C16—C17 −163.58 (11) C18—C23—N3—C24 179.36 (13)
C34—C15—C16—C17 77.99 (12) C25—C24—N3—C17 −115.58 (16)
N4—C16—C17—O1 46.14 (19) C25—C24—N3—C23 63.48 (19)
C18—C16—C17—O1 170.79 (14) C18—C16—N4—C38 −76.15 (16)
C15—C16—C17—O1 −67.08 (17) C17—C16—N4—C38 40.64 (18)
N4—C16—C17—N3 −132.09 (12) C15—C16—N4—C38 157.97 (13)
C18—C16—C17—N3 −7.43 (14) C18—C16—N4—C35 157.07 (12)
C15—C16—C17—N3 114.69 (12) C17—C16—N4—C35 −86.13 (14)
N4—C16—C18—C19 −47.3 (2) C15—C16—N4—C35 31.19 (14)
C17—C16—C18—C19 −171.24 (15) C37—C38—N4—C16 −141.24 (15)
C15—C16—C18—C19 71.31 (19) C37—C38—N4—C35 −14.10 (18)
N4—C16—C18—C23 130.56 (13) C36—C35—N4—C16 121.53 (14)
C17—C16—C18—C23 6.58 (14) C34—C35—N4—C16 −5.40 (15)
C15—C16—C18—C23 −110.87 (13) C36—C35—N4—C38 −10.11 (17)
C23—C18—C19—C20 2.3 (2) C34—C35—N4—C38 −137.04 (13)
C16—C18—C19—C20 179.94 (14) O3—C33—O2—C32 −0.2 (3)
C18—C19—C20—C21 −0.2 (2) C34—C33—O2—C32 179.15 (16)
C19—C20—C21—C22 −1.7 (2) C31—C32—O2—C33 88.0 (2)
C20—C21—C22—C23 1.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···N2 0.99 (2) 2.03 (2) 2.996 (2) 164 (2)
O4—H4B···O1i 0.99 (2) 2.31 (2) 3.222 (2) 154 (2)
C2—H2···O1ii 0.93 2.50 3.393 (2) 162
C24—H24A···O4iii 0.97 2.56 3.495 (3) 163

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2437).

References

  1. Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409. [DOI] [PubMed]
  2. Azizian, J., Mohammadizadeh, M. R., Karimi, N., Kazemizadeh, Z., Mohammadi, A. A. & Karimi, A. R. (2005). Heteroat. Chem. 16, 549–552.
  3. Bruker. (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Dandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852–1859.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. He, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100. [DOI] [PubMed]
  8. Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.
  9. Saeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345–5348.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Srinivasan, T., Suhitha, S., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2469. [DOI] [PMC free article] [PubMed]
  13. Zarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149–2156. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011537/bx2437sup1.cif

e-69-0o854-sup1.cif (30.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011537/bx2437Isup2.hkl

e-69-0o854-Isup2.hkl (259.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES