Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):o859. doi: 10.1107/S1600536813012063

(2E)-1-(5-Bromothiophen-2-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

H D Kavitha a, K R Roopashree b, Suresh B Vepuri c, H C Devarajegowda b,*, Venkatesh B Devaru d
PMCID: PMC3684940  PMID: 23795042

Abstract

In the title compound, C13H8BrClOS, the thio­phene and phenyl rings are inclined by 40.69 (11)° to each other. The crystal structure is characterized by C—H⋯π inter­actions, which link the mol­ecules into broad layers parallel to (100). Short Br⋯Cl contacts [3.698 (1) Å] link these layers along [100].

Related literature  

For general background to chalcones, see: Chun et al. (2001); Horng et al. (2003); Lopez et al. (2001); Mei et al. (2003). For related structures, see: Vepuri et al. (2012); Li & Su (1993).graphic file with name e-69-0o859-scheme1.jpg

Experimental  

Crystal data  

  • C13H8BrClOS

  • M r = 327.61

  • Monoclinic, Inline graphic

  • a = 15.235 (3) Å

  • b = 13.959 (3) Å

  • c = 5.9153 (11) Å

  • β = 93.259 (3)°

  • V = 1255.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 14247 measured reflections

  • 3032 independent reflections

  • 2204 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.081

  • S = 1.05

  • 3032 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813012063/bg2505sup1.cif

e-69-0o859-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012063/bg2505Isup2.hkl

e-69-0o859-Isup2.hkl (106.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012063/bg2505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg2i 0.93 2.87 3.557 (3) 132
C16—H16⋯Cg2ii 0.93 2.96 3.480 (3) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his constant support and for the data collection.

supplementary crystallographic information

Comment

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (Chun et al., 2001; Horng et al., 2003; Lopez et al., 2001; Mei et al., 2003). We report here the crystal structure of a bromo derivative of hetero aryl chalcone which has shown aldose reductase inhibition in the virtual screening study conducted by us.

The titlecompound (2E)-1-(5-bromo-2-thienyl)-3-(4- chlorophenyl)prop-2-en-1-one, C13H8Br Cl O S, presents a five-membered thiophene ring (S3\C14\···C17) and a phenyl ring (C5\C6\···C10) at 40.69 (11)° to each other (Fig 1). All intermolecular bond lengths and angles are within normal ranges (Vepuri et al., 2012; Li & Su, 1993). The crystal structure is characterized by C—H···π interactions (C10—H10···Cg2; C16—H16···Cg2, Cg2 = C5->C10) (Table 1) which link molecules into broad 2D structures parallel to (100). There are in addition short intermolecular Br1···Cl2 contacts of 3.698 (1) Å, which link these structures along [100]. (Fig 2)

Experimental

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 4-chlorobenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Dashed lines represent C-H···π and Br···Cl bonds.

Crystal data

C13H8BrClOS F(000) = 648
Mr = 327.61 Dx = 1.733 Mg m3
Monoclinic, P21/c Melting point: 399 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 15.235 (3) Å Cell parameters from 2202 reflections
b = 13.959 (3) Å θ = 2.0–25.0°
c = 5.9153 (11) Å µ = 3.63 mm1
β = 93.259 (3)° T = 293 K
V = 1255.9 (4) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3032 independent reflections
Radiation source: fine-focus sealed tube 2204 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω and φ scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −18→18
Tmin = 0.770, Tmax = 1.000 k = 0→16
14247 measured reflections l = 0→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2986P] where P = (Fo2 + 2Fc2)/3
2202 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.876810 (18) 0.34860 (2) 0.10591 (6) 0.06662 (15)
Cl2 0.03637 (5) 0.36156 (7) 0.68667 (14) 0.0719 (3)
S3 0.67904 (4) 0.34879 (5) −0.04338 (10) 0.04481 (18)
O4 0.48985 (13) 0.37196 (16) −0.1517 (3) 0.0642 (6)
C5 0.13007 (16) 0.37433 (18) 0.5358 (4) 0.0436 (6)
C6 0.12401 (15) 0.41523 (19) 0.3238 (4) 0.0466 (6)
H6 0.0705 0.4381 0.2626 0.056*
C7 0.19854 (15) 0.42171 (17) 0.2044 (4) 0.0421 (6)
H7 0.1943 0.4480 0.0598 0.051*
C8 0.28016 (15) 0.39015 (16) 0.2928 (4) 0.0369 (5)
C9 0.28356 (16) 0.35027 (16) 0.5098 (4) 0.0407 (6)
H9 0.3372 0.3292 0.5743 0.049*
C10 0.20961 (17) 0.34157 (16) 0.6295 (4) 0.0431 (6)
H10 0.2129 0.3138 0.7727 0.052*
C11 0.35582 (15) 0.39464 (17) 0.1545 (4) 0.0399 (5)
H11 0.3445 0.4112 0.0034 0.048*
C12 0.43893 (16) 0.37794 (19) 0.2184 (4) 0.0450 (6)
H12 0.4544 0.3669 0.3706 0.054*
C13 0.50768 (17) 0.37658 (18) 0.0522 (4) 0.0431 (6)
C14 0.59921 (15) 0.37793 (16) 0.1398 (4) 0.0371 (5)
C15 0.63572 (16) 0.40178 (19) 0.3477 (4) 0.0454 (6)
H15 0.6027 0.4194 0.4684 0.055*
C16 0.72770 (16) 0.39728 (19) 0.3626 (4) 0.0464 (6)
H16 0.7625 0.4121 0.4922 0.056*
C17 0.75950 (15) 0.36879 (17) 0.1654 (4) 0.0410 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03415 (18) 0.0911 (3) 0.0755 (2) 0.00978 (13) 0.01087 (14) 0.00945 (16)
Cl2 0.0432 (4) 0.1058 (7) 0.0687 (5) −0.0075 (4) 0.0196 (3) 0.0045 (4)
S3 0.0374 (4) 0.0601 (4) 0.0373 (3) 0.0041 (3) 0.0062 (3) −0.0034 (3)
O4 0.0443 (11) 0.1042 (17) 0.0438 (11) 0.0027 (10) −0.0004 (8) −0.0067 (10)
C5 0.0348 (13) 0.0501 (14) 0.0466 (14) −0.0074 (11) 0.0069 (11) −0.0050 (12)
C6 0.0318 (13) 0.0592 (17) 0.0483 (15) 0.0033 (11) −0.0024 (10) 0.0017 (12)
C7 0.0377 (13) 0.0474 (14) 0.0407 (13) 0.0003 (11) −0.0025 (10) 0.0034 (11)
C8 0.0344 (12) 0.0350 (12) 0.0411 (13) −0.0037 (10) 0.0003 (10) −0.0021 (10)
C9 0.0351 (13) 0.0433 (14) 0.0431 (14) 0.0022 (10) −0.0029 (11) −0.0003 (10)
C10 0.0452 (14) 0.0432 (14) 0.0408 (14) −0.0018 (11) 0.0013 (11) 0.0006 (10)
C11 0.0367 (13) 0.0429 (13) 0.0400 (13) −0.0018 (10) 0.0020 (10) −0.0024 (10)
C12 0.0369 (14) 0.0580 (15) 0.0402 (13) 0.0007 (11) 0.0039 (11) 0.0015 (11)
C13 0.0367 (13) 0.0484 (14) 0.0441 (15) 0.0010 (11) 0.0017 (11) 0.0003 (11)
C14 0.0320 (12) 0.0393 (13) 0.0406 (13) 0.0014 (10) 0.0077 (10) −0.0008 (10)
C15 0.0424 (14) 0.0525 (16) 0.0420 (14) 0.0038 (11) 0.0077 (11) −0.0078 (11)
C16 0.0407 (14) 0.0555 (16) 0.0430 (14) −0.0036 (12) 0.0004 (11) −0.0066 (12)
C17 0.0300 (12) 0.0426 (13) 0.0507 (14) −0.0018 (10) 0.0042 (10) 0.0034 (11)

Geometric parameters (Å, º)

Br1—C17 1.863 (2) C9—C10 1.370 (3)
Cl2—C5 1.735 (3) C9—H9 0.9300
S3—C17 1.713 (3) C10—H10 0.9300
S3—C14 1.723 (2) C11—C12 1.321 (3)
O4—C13 1.223 (3) C11—H11 0.9300
C5—C6 1.376 (4) C12—C13 1.477 (3)
C5—C10 1.381 (4) C12—H12 0.9300
C6—C7 1.374 (3) C13—C14 1.460 (3)
C6—H6 0.9300 C14—C15 1.362 (3)
C7—C8 1.393 (3) C15—C16 1.400 (3)
C7—H7 0.9300 C15—H15 0.9300
C8—C9 1.397 (3) C16—C17 1.348 (3)
C8—C11 1.452 (3) C16—H16 0.9300
C17—S3—C14 90.57 (12) C12—C11—H11 116.2
C6—C5—C10 121.0 (2) C8—C11—H11 116.2
C6—C5—Cl2 119.8 (2) C11—C12—C13 121.1 (2)
C10—C5—Cl2 119.2 (2) C11—C12—H12 119.5
C7—C6—C5 118.8 (2) C13—C12—H12 119.5
C7—C6—H6 120.6 O4—C13—C14 120.3 (2)
C5—C6—H6 120.6 O4—C13—C12 122.1 (2)
C6—C7—C8 122.2 (2) C14—C13—C12 117.6 (2)
C6—C7—H7 118.9 C15—C14—C13 131.0 (2)
C8—C7—H7 118.9 C15—C14—S3 111.04 (18)
C7—C8—C9 117.2 (2) C13—C14—S3 117.92 (18)
C7—C8—C11 119.7 (2) C14—C15—C16 113.7 (2)
C9—C8—C11 123.1 (2) C14—C15—H15 123.2
C10—C9—C8 121.4 (2) C16—C15—H15 123.2
C10—C9—H9 119.3 C17—C16—C15 111.5 (2)
C8—C9—H9 119.3 C17—C16—H16 124.3
C9—C10—C5 119.4 (2) C15—C16—H16 124.3
C9—C10—H10 120.3 C16—C17—S3 113.23 (19)
C5—C10—H10 120.3 C16—C17—Br1 127.2 (2)
C12—C11—C8 127.6 (2) S3—C17—Br1 119.61 (14)
C10—C5—C6—C7 1.0 (4) C11—C12—C13—C14 167.3 (2)
Cl2—C5—C6—C7 −177.9 (2) O4—C13—C14—C15 164.8 (3)
C5—C6—C7—C8 −1.4 (4) C12—C13—C14—C15 −17.0 (4)
C6—C7—C8—C9 0.6 (4) O4—C13—C14—S3 −12.8 (3)
C6—C7—C8—C11 177.1 (2) C12—C13—C14—S3 165.31 (18)
C7—C8—C9—C10 0.7 (3) C17—S3—C14—C15 0.3 (2)
C11—C8—C9—C10 −175.7 (2) C17—S3—C14—C13 178.47 (19)
C8—C9—C10—C5 −1.1 (4) C13—C14—C15—C16 −177.6 (2)
C6—C5—C10—C9 0.2 (4) S3—C14—C15—C16 0.2 (3)
Cl2—C5—C10—C9 179.09 (18) C14—C15—C16—C17 −0.8 (3)
C7—C8—C11—C12 171.9 (3) C15—C16—C17—S3 1.0 (3)
C9—C8—C11—C12 −11.8 (4) C15—C16—C17—Br1 −177.94 (19)
C8—C11—C12—C13 174.2 (2) C14—S3—C17—C16 −0.8 (2)
C11—C12—C13—O4 −14.5 (4) C14—S3—C17—Br1 178.26 (15)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C5–C10 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10···Cg2i 0.93 2.87 3.557 (3) 132
C16—H16···Cg2ii 0.93 2.96 3.480 (3) 117

Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2505).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev. Res. 53, 9–14.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105–111.
  5. Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075–1077.
  6. Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013. [DOI] [PubMed]
  7. Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.
  8. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vepuri, S. B., Devarajegowda, H. C., Jeyaseelan, S., Anbazhagan, S. & Prasad, Y. R. (2012). Acta Cryst. E68, o3456. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813012063/bg2505sup1.cif

e-69-0o859-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012063/bg2505Isup2.hkl

e-69-0o859-Isup2.hkl (106.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012063/bg2505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES