Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 11;69(Pt 6):o860. doi: 10.1107/S1600536813012087

Ammonium 2-(3,4-di­methyl­benzo­yl)benzoate dihydrate

Ming-Hui Zhang a, Yue-Lin Yuan a, Jun-Feng Kou a,*
PMCID: PMC3684941  PMID: 23795043

Abstract

In the anion of the title compound, NH4 +·C16H13O3 ·2H2O, the benzene rings are twisted with respect to each other by 73.56 (10)°. In the crystal, extensive N—H⋯O and O—H⋯O hydrogen bonds link the cations, anions and lattice water mol­ecules into a three dimensional supra­molecular structure.

Related literature  

For the synthesis of the title compound, see: Elofson et al. (1965). For related compounds, see: Boon et al. (1986); Yeung et al. (2002); Gopalakrishnan et al. (2005); Qiao et al. (2008); Gouda et al. (2010).graphic file with name e-69-0o860-scheme1.jpg

Experimental  

Crystal data  

  • NH4 +·C16H13O3 ·2H2O

  • M r = 307.34

  • Triclinic, Inline graphic

  • a = 7.5039 (15) Å

  • b = 7.7458 (15) Å

  • c = 14.439 (3) Å

  • α = 81.63 (3)°

  • β = 79.15 (3)°

  • γ = 78.67 (3)°

  • V = 803.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection  

  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • 6289 measured reflections

  • 2791 independent reflections

  • 1674 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.01

  • 2791 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536813012087/xu5697sup1.cif

e-69-0o860-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012087/xu5697Isup2.hkl

e-69-0o860-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4W 0.93 1.98 2.836 (2) 152
N1—H1B⋯O3 0.93 1.90 2.820 (2) 170
N1—H1C⋯O3i 0.96 1.88 2.823 (3) 167
N1—H1D⋯O5W ii 0.96 2.03 2.871 (3) 144
N1—H1D⋯O4W iii 0.96 2.45 3.067 (3) 121
O4W—H4WA⋯O2iv 0.90 1.93 2.809 (2) 164
O4W—H4WB⋯O2ii 0.90 1.91 2.808 (2) 172
O5W—H5WA⋯O1v 0.87 2.04 2.899 (2) 171
O5W—H5WB⋯O2 0.85 2.31 3.032 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The work was supported by the Youth Fund of Yunnan Normal University and the Scientific Research Foundation of Yunnan Provincial Department of Education (grant No. 22012Z019).

supplementary crystallographic information

Comment

Friedel-Crafts acylation provides a fundamentaland useful method for the synthesis of aromatic ketones, which are important intermediates for preparing fine chemicals in the field of pharmaceuticals, agrochemicals, and fragrances. Typically, these reactions are performed using acyl chloride (for acylation) in the presence of a little more than one equivalent of Lewis acids, such as anhydrous aluminium chloride, titanium chloride and iron chloride (Elofson et al. 1965; Boon et al. 1986; Yeung et al. 2002; Gopalakrishnan et al. 2005; Qiao et al. 2008; Gouda et al. 2010). Herein we report the synthesis and structure of the title compound with aluminium chloride.

The structure of the title compound is shown in Fig. 1, Fig. 2 and hydrogen-bond geometry is given in Table 1. The compound crystallizes in the triclinic space group p-1,and the crystallographic asymmetric unit consists of one crystallo graphically independent anion, one ammonium cation and two water molecules. As shown in Fig.2, the dihedral angle is 73.2 between benzene rings which are not coplane. An interesting part of the structure of title compound is the helical chains formed by the N—H···O and O—H···O. hydrogen-bonding interactions along c axis in this molecule (Table 1 & Fig.3). Two neighouring N atoms formed helical chain (O3—N1—O4W—O2 andO2-O4W—N1—O3) which bridge two carboxy O3 atoms formed two oppposite handed chains with the bond distances of N1···O3 2.823 (3) Å, N1···O4w 3.067 (3) Å, O4W···O2 2.808 (2) Å. Further connection of the helices via N—H···O5W hydrogen bond with the bond distance of 2.871 Å gives the three-dimensional structure.

Experimental

In a 250 ml dry three-necked round-bottom flask, aluminium chloride (34.8 g, 0.26 mol) was dissolved in dry dichloromethane (150 ml), ortho-xylene (11.2 g, 0.105 mol) was added and then phthalic anhydride portion-wise with formation of an orange liquid in ice bath for 3 h while stirring. The mixture was reacted for 10 h while elevating the temperature of the reactor up to 303 K with formation of a yellow precipitate, then cooled down to room temperature and poured over a mixture of ice (20 g) and concentrated hydrochloric acid (10 ml) with a large amount of gas generated by HCl (Elofson et al., 1965). The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 × 50 ml). The combined organic layers were washed with water (20 ml), concentrated in the rotary evaporator to give the pure yell compound, dried in vaccum and yield: 20.2 g, 80%. MS(EI): m/z = 254([M—CH3]+). Crystals suitable for X-ray analysis were obtained by evaporate slowly the solution of the compound in 25% aqueous ammonia in 88% yield within a month.

Refinement

H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The H atoms were constrained with N—H distances of 0.93–0.96 Å, Uiso(H) = 1.2Ueq(N) and O—H distance of 0.85–0.90 Å with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen bonds are shown as brown dashed lines.

Fig. 3.

Fig. 3.

A view of the crystal packing.

Crystal data

NH4+·C16H13O3·2H2O Z = 2
Mr = 307.34 F(000) = 328
Triclinic, P1 Dx = 1.271 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5039 (15) Å Cell parameters from 9573 reflections
b = 7.7458 (15) Å θ = 3.2–25.0°
c = 14.439 (3) Å µ = 0.09 mm1
α = 81.63 (3)° T = 293 K
β = 79.15 (3)° Block, colorless
γ = 78.67 (3)° 0.20 × 0.18 × 0.15 mm
V = 803.0 (3) Å3

Data collection

Rigaku MM007-HF CCD (Saturn 724+) diffractometer 1674 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.032
Confocal monochromator θmax = 25.0°, θmin = 3.2°
ω scans at fixed χ = 45° h = −8→8
6289 measured reflections k = −9→8
2791 independent reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0127P] where P = (Fo2 + 2Fc2)/3
2791 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8894 (3) 0.3453 (3) 0.37419 (13) 0.0384 (5)
C2 1.0501 (3) 0.4382 (2) 0.33412 (13) 0.0358 (5)
C3 1.0619 (3) 0.5954 (3) 0.36741 (15) 0.0481 (6)
H3 0.9645 0.6478 0.4100 0.058*
C4 1.2161 (3) 0.6742 (3) 0.33795 (17) 0.0568 (6)
H4 1.2218 0.7789 0.3608 0.068*
C5 1.3603 (3) 0.5986 (3) 0.27530 (17) 0.0596 (7)
H5 1.4644 0.6514 0.2560 0.071*
C6 1.3514 (3) 0.4435 (3) 0.24053 (16) 0.0502 (6)
H6 1.4501 0.3921 0.1982 0.060*
C7 1.1961 (3) 0.3644 (2) 0.26844 (13) 0.0370 (5)
C8 1.1918 (3) 0.2019 (3) 0.22316 (13) 0.0379 (5)
C9 1.0404 (3) 0.2066 (2) 0.16934 (12) 0.0350 (5)
C10 0.9867 (3) 0.0489 (3) 0.15866 (13) 0.0386 (5)
H10 1.0460 −0.0577 0.1862 0.046*
C11 0.8476 (3) 0.0471 (3) 0.10814 (13) 0.0400 (5)
C12 0.7643 (3) 0.2059 (3) 0.06282 (14) 0.0415 (5)
C13 0.8184 (3) 0.3637 (3) 0.07373 (14) 0.0458 (5)
H13 0.7633 0.4702 0.0441 0.055*
C14 0.9519 (3) 0.3644 (3) 0.12749 (14) 0.0416 (5)
H14 0.9825 0.4712 0.1357 0.050*
C15 0.7866 (3) −0.1259 (3) 0.10343 (17) 0.0578 (6)
H15A 0.8145 −0.1540 0.0391 0.087*
H15B 0.6563 −0.1148 0.1251 0.087*
H15C 0.8504 −0.2188 0.1431 0.087*
C16 0.6165 (3) 0.2111 (3) 0.00431 (17) 0.0592 (6)
H16A 0.5107 0.1731 0.0444 0.089*
H16B 0.6623 0.1335 −0.0442 0.089*
H16C 0.5823 0.3298 −0.0245 0.089*
N1 0.5486 (2) 0.7384 (2) 0.49120 (13) 0.0498 (5)
H1A 0.6138 0.7907 0.5245 0.060*
H1B 0.6234 0.6452 0.4616 0.060*
H1C 0.4464 0.6937 0.5318 0.060*
H1D 0.5135 0.8306 0.4423 0.060*
O1 1.3187 (2) 0.07641 (19) 0.22420 (10) 0.0517 (4)
O2 0.91984 (18) 0.17891 (17) 0.37486 (9) 0.0428 (4)
O3 0.7384 (2) 0.4340 (2) 0.40630 (12) 0.0634 (5)
O4W 0.7770 (2) 0.9592 (2) 0.53226 (11) 0.0572 (4)
H4WA 0.8648 0.9304 0.5697 0.069*
H4WB 0.8282 1.0201 0.4789 0.069*
O5W 0.6084 (2) 0.0140 (3) 0.33873 (12) 0.0833 (6)
H5WA 0.5287 0.0395 0.3001 0.100*
H5WB 0.6978 0.0708 0.3198 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0357 (12) 0.0423 (13) 0.0370 (11) −0.0088 (10) 0.0010 (9) −0.0099 (9)
C2 0.0341 (11) 0.0372 (11) 0.0374 (10) −0.0096 (9) −0.0047 (9) −0.0054 (9)
C3 0.0511 (14) 0.0460 (13) 0.0494 (13) −0.0131 (11) −0.0024 (10) −0.0137 (10)
C4 0.0656 (17) 0.0513 (14) 0.0617 (15) −0.0262 (12) −0.0087 (13) −0.0142 (12)
C5 0.0577 (16) 0.0622 (17) 0.0661 (15) −0.0360 (13) −0.0048 (13) −0.0033 (12)
C6 0.0406 (13) 0.0568 (14) 0.0533 (13) −0.0181 (11) 0.0046 (10) −0.0098 (11)
C7 0.0356 (12) 0.0405 (12) 0.0361 (11) −0.0122 (9) −0.0038 (9) −0.0031 (9)
C8 0.0357 (12) 0.0396 (12) 0.0362 (11) −0.0091 (10) 0.0038 (9) −0.0056 (9)
C9 0.0370 (11) 0.0337 (11) 0.0331 (10) −0.0060 (9) 0.0011 (9) −0.0089 (9)
C10 0.0433 (12) 0.0311 (11) 0.0389 (11) −0.0037 (9) −0.0021 (9) −0.0056 (9)
C11 0.0442 (12) 0.0364 (12) 0.0392 (11) −0.0092 (10) 0.0004 (10) −0.0099 (9)
C12 0.0372 (12) 0.0505 (13) 0.0372 (11) −0.0090 (10) −0.0008 (9) −0.0112 (10)
C13 0.0486 (14) 0.0404 (12) 0.0463 (12) −0.0035 (10) −0.0089 (10) −0.0027 (10)
C14 0.0475 (13) 0.0340 (12) 0.0440 (12) −0.0088 (10) −0.0049 (10) −0.0073 (9)
C15 0.0688 (17) 0.0475 (14) 0.0633 (15) −0.0197 (12) −0.0099 (12) −0.0143 (11)
C16 0.0538 (15) 0.0681 (17) 0.0600 (14) −0.0092 (12) −0.0171 (12) −0.0133 (13)
N1 0.0438 (11) 0.0422 (10) 0.0637 (12) −0.0110 (8) 0.0008 (9) −0.0148 (9)
O1 0.0425 (9) 0.0480 (9) 0.0634 (10) 0.0012 (7) −0.0080 (7) −0.0155 (8)
O2 0.0434 (9) 0.0356 (8) 0.0480 (8) −0.0117 (6) 0.0002 (7) −0.0039 (6)
O3 0.0411 (10) 0.0552 (10) 0.0904 (12) −0.0113 (8) 0.0169 (8) −0.0289 (9)
O4W 0.0463 (9) 0.0669 (10) 0.0606 (9) −0.0221 (8) −0.0130 (7) 0.0081 (8)
O5W 0.0654 (12) 0.1233 (16) 0.0654 (11) −0.0396 (12) −0.0147 (9) 0.0123 (11)

Geometric parameters (Å, º)

C1—O3 1.249 (2) C11—C15 1.513 (3)
C1—O2 1.263 (2) C12—C13 1.399 (3)
C1—C2 1.505 (3) C12—C16 1.507 (3)
C2—C3 1.396 (2) C13—C14 1.379 (3)
C2—C7 1.395 (3) C13—H13 0.9300
C3—C4 1.382 (3) C14—H14 0.9300
C3—H3 0.9300 C15—H15A 0.9600
C4—C5 1.367 (3) C15—H15B 0.9600
C4—H4 0.9300 C15—H15C 0.9600
C5—C6 1.386 (3) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.389 (3) C16—H16C 0.9600
C6—H6 0.9300 N1—H1A 0.9264
C7—C8 1.509 (3) N1—H1B 0.9263
C8—O1 1.220 (2) N1—H1C 0.9630
C8—C9 1.484 (3) N1—H1D 0.9636
C9—C14 1.385 (3) O4W—H4WA 0.9042
C9—C10 1.396 (3) O4W—H4WB 0.9039
C10—C11 1.385 (3) O5W—H5WA 0.8692
C10—H10 0.9300 O5W—H5WB 0.8542
C11—C12 1.396 (3)
O3—C1—O2 124.36 (19) C10—C11—C15 119.80 (19)
O3—C1—C2 119.25 (18) C12—C11—C15 120.91 (18)
O2—C1—C2 116.36 (17) C11—C12—C13 118.71 (17)
C3—C2—C7 118.41 (18) C11—C12—C16 121.57 (18)
C3—C2—C1 120.09 (18) C13—C12—C16 119.7 (2)
C7—C2—C1 121.35 (16) C14—C13—C12 121.3 (2)
C4—C3—C2 121.0 (2) C14—C13—H13 119.3
C4—C3—H3 119.5 C12—C13—H13 119.3
C2—C3—H3 119.5 C13—C14—C9 120.21 (17)
C5—C4—C3 120.15 (19) C13—C14—H14 119.9
C5—C4—H4 119.9 C9—C14—H14 119.9
C3—C4—H4 119.9 C11—C15—H15A 109.5
C4—C5—C6 120.0 (2) C11—C15—H15B 109.5
C4—C5—H5 120.0 H15A—C15—H15B 109.5
C6—C5—H5 120.0 C11—C15—H15C 109.5
C5—C6—C7 120.4 (2) H15A—C15—H15C 109.5
C5—C6—H6 119.8 H15B—C15—H15C 109.5
C7—C6—H6 119.8 C12—C16—H16A 109.5
C6—C7—C2 119.96 (17) C12—C16—H16B 109.5
C6—C7—C8 117.37 (18) H16A—C16—H16B 109.5
C2—C7—C8 122.65 (17) C12—C16—H16C 109.5
O1—C8—C9 121.17 (16) H16A—C16—H16C 109.5
O1—C8—C7 120.19 (17) H16B—C16—H16C 109.5
C9—C8—C7 118.34 (17) H1A—N1—H1B 111.3
C14—C9—C10 118.58 (17) H1A—N1—H1C 111.9
C14—C9—C8 121.56 (16) H1B—N1—H1C 108.1
C10—C9—C8 119.85 (18) H1A—N1—H1D 103.8
C11—C10—C9 121.76 (19) H1B—N1—H1D 107.6
C11—C10—H10 119.1 H1C—N1—H1D 114.1
C9—C10—H10 119.1 H4WA—O4W—H4WB 105.6
C10—C11—C12 119.28 (17) H5WA—O5W—H5WB 111.4
O3—C1—C2—C3 28.0 (3) C2—C7—C8—C9 57.7 (3)
O2—C1—C2—C3 −150.26 (18) O1—C8—C9—C14 −147.4 (2)
O3—C1—C2—C7 −156.54 (19) C7—C8—C9—C14 26.3 (3)
O2—C1—C2—C7 25.2 (3) O1—C8—C9—C10 31.4 (3)
C7—C2—C3—C4 −1.5 (3) C7—C8—C9—C10 −154.87 (18)
C1—C2—C3—C4 174.1 (2) C14—C9—C10—C11 −0.4 (3)
C2—C3—C4—C5 0.0 (3) C8—C9—C10—C11 −179.27 (17)
C3—C4—C5—C6 0.6 (4) C9—C10—C11—C12 3.1 (3)
C4—C5—C6—C7 0.4 (3) C9—C10—C11—C15 −176.39 (18)
C5—C6—C7—C2 −2.0 (3) C10—C11—C12—C13 −3.0 (3)
C5—C6—C7—C8 176.4 (2) C15—C11—C12—C13 176.5 (2)
C3—C2—C7—C6 2.5 (3) C10—C11—C12—C16 178.04 (19)
C1—C2—C7—C6 −173.04 (19) C15—C11—C12—C16 −2.5 (3)
C3—C2—C7—C8 −175.84 (18) C11—C12—C13—C14 0.4 (3)
C1—C2—C7—C8 8.6 (3) C16—C12—C13—C14 179.34 (19)
C6—C7—C8—O1 53.1 (3) C12—C13—C14—C9 2.3 (3)
C2—C7—C8—O1 −128.6 (2) C10—C9—C14—C13 −2.3 (3)
C6—C7—C8—C9 −120.7 (2) C8—C9—C14—C13 176.55 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4W 0.93 1.98 2.836 (2) 152
N1—H1B···O3 0.93 1.90 2.820 (2) 170
N1—H1C···O3i 0.96 1.88 2.823 (3) 167
N1—H1D···O5Wii 0.96 2.03 2.871 (3) 144
N1—H1D···O4Wiii 0.96 2.45 3.067 (3) 121
O4W—H4WA···O2iv 0.90 1.93 2.809 (2) 164
O4W—H4WB···O2ii 0.90 1.91 2.808 (2) 172
O5W—H5WA···O1v 0.87 2.04 2.899 (2) 171
O5W—H5WB···O2 0.85 2.31 3.032 (2) 142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5697).

References

  1. Boon, J. A., Levisky, J. A., Pflug, J. L. & Wilkes, J. S. (1986). J. Org. Chem. 51, 480–483.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Elofson, R. M., Schulz, K. F., Galbraith, B. E. & Newton, R. (1965). Can. J. Chem. 43, 1553–1559.
  4. Gopalakrishnan, M., Sureshkumar, P., Kanagarajan, V. & Thanusu, J. (2005). Catal. Commun. 6, 753–756.
  5. Gouda, M. A., Berghot, M. A., Shoeib, A. M. & Khalil, A. M. (2010). Eur. J. Med. Chem. 45, 1843–1848. [DOI] [PubMed]
  6. Qiao, W.-Z., Zheng, J., Wang, Y.-J., Song, N.-H., Wan, X.-H. & Wang, Z.-Y. (2008). Org. Lett. 10, 241–244. [DOI] [PubMed]
  7. Rigaku/MSC. (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yeung, K. S., Farkas, M. E., Qiu, Z. & Yang, Z. (2002). Tetrahedron Lett. 43, 5793–5795.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536813012087/xu5697sup1.cif

e-69-0o860-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012087/xu5697Isup2.hkl

e-69-0o860-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES