Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 15;69(Pt 6):o883. doi: 10.1107/S1600536813012579

8-{(E)-[(4-Chloro­phen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-1,2,3,5,6,7-hexa­hydro­pyrido[3,2,1-ij]quinolin-9-ol

Esen Nur Kantar a,*, Yavuz Köysal b, Nesuhi Akdemir c, Ayşen Alaman Ağar d, Mustafa Serkan Soylu e
PMCID: PMC3685040  PMID: 23795059

Abstract

The title Schiff base, C23H27ClN2O adopts the phenol–imine tautomeric form, with an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif. Three C atoms of the heterocyclic moiety of the hexa­hydro­pyrido­quinoline unit, as well as the two methyl groups bonded to one of these C atoms, are disordered over two set of sites, with anoccupancy ratio of 0.740 (4):0.260 (4).

Related literature  

For a related structure, see: Kantar et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational parameters, see: Cremer & Pople (1975)graphic file with name e-69-0o883-scheme1.jpg

Experimental  

Crystal data  

  • C23H27ClN2O

  • M r = 382.92

  • Triclinic, Inline graphic

  • a = 6.4716 (3) Å

  • b = 9.8468 (6) Å

  • c = 16.9206 (7) Å

  • α = 75.438 (4)°

  • β = 80.307 (4)°

  • γ = 75.863 (4)°

  • V = 1005.42 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection  

  • Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.947, T max = 0.975

  • 5887 measured reflections

  • 3651 independent reflections

  • 2959 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.142

  • S = 1.08

  • 3651 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813012579/lr2103sup1.cif

e-69-0o883-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012579/lr2103Isup2.hkl

e-69-0o883-Isup2.hkl (175.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012579/lr2103Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N8 0.98 1.65 2.563 (2) 155

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer

supplementary crystallographic information

Comment

As can see in Fig. 1, the molecule of the title compound, C23H27N2OCl, exhibits an intra-molecular O13—H13···N8 [d(N···O) 2.563 (3) Å] hydrogen bond which generates an S(6) ring motif (Bernstein, et al., 1995). The compound adopts the phenol-imine tautomeric form. The C7—N8—C9—C10 torsion angle is 177,14 (5)°. The C11—O13 [1.352 (2) Å] bond length is in agreement with our related study of 5-Diethylamino-2-[(E)-(2,4-dimethoxyphenyl) iminomethyl ]phenol, (Kantar et al., 2012). The part A (sof=0.740) of the disordered six-membered ring [N9/C28/C29/C31/C32/C33] adopts a half-chair conformation, with puckering parameters: Q = 0.506 (5) Å, θ = 56.1 (5)°, φ = 84.8 (7); while the part B (sof= 0.260) exhibits an envelope conformation with puckering parameters: Q = 0.510 (15) Å, θ = 58.9 (15)°, φ = 236.0 (17)°. Finally the [N9/C26/C22/C17/C14/C28] ring exhibits a half-chair conformation with puckering parameters: Q = 0.490 (3) Å, θ = 124.5 (3)°, φ = 270.9 (3)° (Cremer & Pople, 1975).

Experimental

The title compound was prepared by refluxing a mixture containing 5-nitro-2-thiophene-carboxaldehyde (0.157 g 1.0 mmol) and 4-Chloroaniline (0.185 g 1.0 mmol) in 20 ml of ethanol for 4 hours. Crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol (yield 63%; m.p 129–131 oC).

Refinement

The disordered C31 and C33 atoms have to be keeped isotropic during the refinement. All H, except de one bonded to the oxygen atom, were fixed geometrically and refined using a riding model with bond distances 0.93-0.97 Å and Uiso(H)=1.5Ueq(Cmethyl) and 1.2 for the remaining hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

A view of (I), with the displacement ellipsoids drawn at the 30% probability level .

Crystal data

C23H27ClN2O Z = 2
Mr = 382.92 F(000) = 408
Triclinic, P1 Dx = 1.265 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4716 (3) Å Cell parameters from 2478 reflections
b = 9.8468 (6) Å θ = 3.3–28.1°
c = 16.9206 (7) Å µ = 0.21 mm1
α = 75.438 (4)° T = 293 K
β = 80.307 (4)° Block, orange
γ = 75.863 (4)° 0.30 × 0.10 × 0.10 mm
V = 1005.42 (9) Å3

Data collection

Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer 3651 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2959 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 16.2413 pixels mm-1 θmax = 25.5°, θmin = 3.3°
ω scans h = −7→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −11→11
Tmin = 0.947, Tmax = 0.975 l = −20→21
5887 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4649P] where P = (Fo2 + 2Fc2)/3
3651 reflections (Δ/σ)max < 0.001
270 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 −0.34788 (11) 0.21739 (8) 0.48881 (4) 0.0504 (2)
O13 0.5458 (3) 0.20809 (16) 0.78056 (10) 0.0319 (4)
H13 0.4430 0.2230 0.7410 0.085 (11)*
N8 0.2753 (3) 0.3204 (2) 0.67532 (12) 0.0320 (5)
N9 0.8858 (3) 0.5185 (2) 0.86809 (12) 0.0304 (5)
C10 0.4526 (3) 0.4605 (2) 0.72697 (13) 0.0260 (5)
C14 0.7036 (3) 0.3581 (2) 0.83166 (13) 0.0226 (5)
C28 0.7385 (3) 0.4979 (2) 0.82400 (13) 0.0246 (5)
C11 0.5687 (3) 0.3411 (2) 0.78026 (13) 0.0241 (5)
C29 0.6219 (3) 0.6195 (2) 0.77113 (14) 0.0270 (5)
C30 0.4837 (3) 0.5960 (2) 0.72526 (14) 0.0286 (5)
H30 0.4068 0.6749 0.6912 0.034*
C9 0.3045 (4) 0.4438 (3) 0.67669 (14) 0.0305 (5)
H9 0.2281 0.5253 0.6443 0.037*
C26 1.0326 (4) 0.3939 (3) 0.90908 (15) 0.0344 (6)
H26A 1.1006 0.4211 0.9480 0.041*
H26B 1.1438 0.3573 0.8689 0.041*
C3 −0.2026 (4) 0.3834 (3) 0.56288 (15) 0.0396 (6)
H3 −0.3225 0.4538 0.5475 0.047*
C2 −0.1648 (4) 0.2534 (3) 0.54194 (14) 0.0375 (6)
C20 0.9757 (4) 0.1232 (3) 0.85168 (15) 0.0349 (6)
H20A 0.9121 0.0974 0.8118 0.052*
H20B 1.0283 0.0386 0.8915 0.052*
H20C 1.0925 0.1683 0.8247 0.052*
C17 0.8073 (3) 0.2277 (2) 0.89482 (14) 0.0268 (5)
C4 0.0146 (4) 0.1472 (3) 0.56321 (16) 0.0436 (7)
H4 0.0386 0.0593 0.5485 0.052*
C6 0.1565 (4) 0.1746 (3) 0.60659 (16) 0.0414 (6)
H6 0.2770 0.1041 0.6213 0.050*
C5 −0.0594 (4) 0.4092 (3) 0.60749 (15) 0.0369 (6)
H5 −0.0858 0.4964 0.6232 0.044*
C7 0.1227 (4) 0.3052 (3) 0.62866 (14) 0.0319 (6)
C21 0.6364 (4) 0.1482 (3) 0.94807 (15) 0.0369 (6)
H21A 0.5219 0.2156 0.9703 0.055*
H21B 0.7004 0.0768 0.9922 0.055*
H21C 0.5805 0.1026 0.9149 0.055*
C22 0.9105 (4) 0.2793 (3) 0.95351 (15) 0.0370 (6)
H22A 0.7997 0.3169 0.9934 0.044*
H22B 1.0076 0.1984 0.9831 0.044*
C31A 0.6373 (6) 0.7726 (4) 0.7709 (3) 0.0261 (12)* 0.740 (4)
C32A 0.7660 (5) 0.7750 (3) 0.8375 (2) 0.0349 (9) 0.740 (4)
H32A 0.6760 0.7673 0.8898 0.042* 0.740 (4)
H32B 0.8115 0.8656 0.8250 0.042* 0.740 (4)
C33A 0.9657 (7) 0.6498 (5) 0.8444 (3) 0.0270 (13)* 0.740 (4)
H33A 1.0553 0.6542 0.7922 0.032* 0.740 (4)
H33B 1.0499 0.6548 0.8855 0.032* 0.740 (4)
C25A 0.7433 (7) 0.8359 (4) 0.6858 (2) 0.0409 (10) 0.740 (4)
H25A 0.8866 0.7811 0.6772 0.061* 0.740 (4)
H25B 0.7480 0.9337 0.6828 0.061* 0.740 (4)
H25C 0.6616 0.8324 0.6443 0.061* 0.740 (4)
C27A 0.4126 (6) 0.8685 (4) 0.7847 (3) 0.0413 (10) 0.740 (4)
H27A 0.3304 0.8730 0.7415 0.062* 0.740 (4)
H27B 0.4269 0.9634 0.7844 0.062* 0.740 (4)
H27C 0.3409 0.8286 0.8367 0.062* 0.740 (4)
C31B 0.6651 (17) 0.7763 (12) 0.7479 (8) 0.023 (3)* 0.260 (4)
C32B 0.8988 (16) 0.7638 (10) 0.7656 (6) 0.038 (3) 0.260 (4)
H32C 0.9239 0.8578 0.7636 0.045* 0.260 (4)
H32D 1.0017 0.7213 0.7251 0.045* 0.260 (4)
C33B 0.922 (2) 0.6647 (14) 0.8544 (8) 0.031 (4)* 0.260 (4)
H33C 1.0648 0.6575 0.8675 0.037* 0.260 (4)
H33D 0.8213 0.7128 0.8933 0.037* 0.260 (4)
C25B 0.6297 (15) 0.8709 (9) 0.6668 (6) 0.048 (3) 0.260 (4)
H25D 0.7062 0.8223 0.6246 0.072* 0.260 (4)
H25E 0.6806 0.9568 0.6619 0.072* 0.260 (4)
H25F 0.4792 0.8955 0.6610 0.072* 0.260 (4)
C27B 0.5165 (15) 0.8384 (9) 0.8190 (6) 0.064 (4) 0.260 (4)
H27D 0.3701 0.8610 0.8077 0.097* 0.260 (4)
H27E 0.5563 0.9239 0.8232 0.097* 0.260 (4)
H27F 0.5320 0.7686 0.8699 0.097* 0.260 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0556 (5) 0.0669 (5) 0.0414 (4) −0.0331 (4) −0.0197 (3) −0.0059 (3)
O13 0.0394 (9) 0.0221 (8) 0.0378 (10) −0.0104 (7) −0.0103 (8) −0.0053 (7)
N8 0.0338 (11) 0.0336 (11) 0.0317 (11) −0.0126 (9) −0.0055 (9) −0.0068 (9)
N9 0.0298 (10) 0.0235 (10) 0.0434 (12) −0.0069 (8) −0.0137 (9) −0.0098 (9)
C10 0.0246 (11) 0.0288 (12) 0.0260 (12) −0.0064 (9) −0.0020 (9) −0.0085 (10)
C14 0.0212 (10) 0.0206 (11) 0.0262 (11) −0.0034 (9) −0.0012 (9) −0.0072 (9)
C28 0.0221 (11) 0.0236 (12) 0.0298 (12) −0.0032 (9) −0.0044 (9) −0.0095 (10)
C11 0.0262 (11) 0.0201 (11) 0.0283 (12) −0.0093 (9) 0.0028 (9) −0.0088 (9)
C29 0.0245 (11) 0.0207 (11) 0.0364 (13) −0.0038 (9) −0.0045 (10) −0.0074 (10)
C30 0.0263 (12) 0.0246 (12) 0.0332 (13) −0.0032 (10) −0.0062 (10) −0.0038 (10)
C9 0.0308 (12) 0.0308 (13) 0.0305 (13) −0.0097 (10) −0.0023 (10) −0.0055 (10)
C26 0.0323 (13) 0.0372 (14) 0.0360 (14) −0.0103 (11) −0.0118 (11) −0.0041 (11)
C3 0.0283 (12) 0.0593 (18) 0.0351 (14) −0.0126 (12) −0.0016 (11) −0.0156 (13)
C2 0.0386 (14) 0.0589 (17) 0.0226 (12) −0.0272 (13) −0.0047 (10) −0.0055 (12)
C20 0.0351 (13) 0.0233 (12) 0.0403 (14) −0.0003 (10) −0.0045 (11) −0.0017 (11)
C17 0.0277 (12) 0.0221 (12) 0.0289 (12) −0.0059 (9) −0.0037 (10) −0.0017 (9)
C4 0.0555 (17) 0.0433 (16) 0.0400 (15) −0.0201 (13) −0.0168 (13) −0.0067 (12)
C6 0.0477 (15) 0.0380 (15) 0.0431 (15) −0.0134 (12) −0.0173 (13) −0.0051 (12)
C5 0.0330 (13) 0.0505 (16) 0.0333 (13) −0.0155 (12) 0.0016 (11) −0.0175 (12)
C7 0.0313 (13) 0.0444 (15) 0.0229 (12) −0.0178 (11) −0.0034 (10) −0.0028 (11)
C21 0.0380 (14) 0.0364 (14) 0.0333 (14) −0.0136 (11) −0.0034 (11) 0.0030 (11)
C22 0.0369 (14) 0.0380 (14) 0.0359 (14) −0.0087 (11) −0.0119 (11) −0.0020 (11)
C32A 0.044 (2) 0.0231 (17) 0.042 (2) −0.0125 (15) −0.0010 (16) −0.0130 (15)
C25A 0.050 (3) 0.029 (2) 0.044 (2) −0.0176 (19) 0.000 (2) −0.0031 (18)
C27A 0.036 (2) 0.0156 (17) 0.072 (3) −0.0011 (16) −0.0018 (19) −0.0152 (18)
C32B 0.049 (6) 0.023 (5) 0.045 (6) −0.018 (4) −0.016 (5) 0.002 (4)
C25B 0.054 (8) 0.027 (6) 0.067 (8) −0.024 (6) −0.030 (7) 0.016 (5)
C27B 0.056 (9) 0.030 (7) 0.107 (13) −0.013 (6) 0.020 (8) −0.032 (8)

Geometric parameters (Å, º)

Cl1—C2 1.750 (2) C6—H6 0.9300
O13—C11 1.352 (2) C5—C7 1.391 (3)
O13—H13 0.9827 C5—H5 0.9300
N8—C9 1.280 (3) C21—H21A 0.9600
N8—C7 1.420 (3) C21—H21B 0.9600
N9—C28 1.384 (3) C21—H21C 0.9600
N9—C33A 1.448 (5) C22—H22A 0.9700
N9—C26 1.453 (3) C22—H22B 0.9700
N9—C33B 1.470 (13) C31A—C32A 1.517 (5)
C10—C30 1.390 (3) C31A—C25A 1.535 (6)
C10—C11 1.422 (3) C31A—C27A 1.545 (5)
C10—C9 1.446 (3) C32A—C33A 1.550 (5)
C14—C11 1.396 (3) C32A—H32A 0.9700
C14—C28 1.419 (3) C32A—H32B 0.9700
C14—C17 1.540 (3) C33A—H33A 0.9700
C28—C29 1.432 (3) C33A—H33B 0.9700
C29—C30 1.372 (3) C25A—H25A 0.9600
C29—C31A 1.534 (4) C25A—H25B 0.9600
C29—C31B 1.576 (11) C25A—H25C 0.9600
C30—H30 0.9300 C27A—H27A 0.9600
C9—H9 0.9300 C27A—H27B 0.9600
C26—C22 1.508 (3) C27A—H27C 0.9600
C26—H26A 0.9700 C31B—C25B 1.470 (15)
C26—H26B 0.9700 C31B—C32B 1.561 (14)
C3—C2 1.368 (4) C31B—C27B 1.561 (15)
C3—C5 1.393 (3) C32B—C33B 1.581 (16)
C3—H3 0.9300 C32B—H32C 0.9700
C2—C4 1.389 (4) C32B—H32D 0.9700
C20—C17 1.530 (3) C33B—H33C 0.9700
C20—H20A 0.9600 C33B—H33D 0.9700
C20—H20B 0.9600 C25B—H25D 0.9600
C20—H20C 0.9600 C25B—H25E 0.9600
C17—C22 1.527 (3) C25B—H25F 0.9600
C17—C21 1.543 (3) C27B—H27D 0.9600
C4—C6 1.379 (3) C27B—H27E 0.9600
C4—H4 0.9300 C27B—H27F 0.9600
C6—C7 1.385 (3)
C11—O13—H13 105.1 H21A—C21—H21B 109.5
C9—N8—C7 121.8 (2) C17—C21—H21C 109.5
C28—N9—C33A 120.1 (2) H21A—C21—H21C 109.5
C28—N9—C26 118.91 (18) H21B—C21—H21C 109.5
C33A—N9—C26 114.7 (2) C26—C22—C17 112.2 (2)
C28—N9—C33B 117.4 (5) C26—C22—H22A 109.2
C33A—N9—C33B 12.9 (6) C17—C22—H22A 109.2
C26—N9—C33B 121.9 (5) C26—C22—H22B 109.2
C30—C10—C11 117.72 (19) C17—C22—H22B 109.2
C30—C10—C9 120.4 (2) H22A—C22—H22B 107.9
C11—C10—C9 121.9 (2) C32A—C31A—C29 111.9 (3)
C11—C14—C28 117.93 (19) C32A—C31A—C25A 110.3 (3)
C11—C14—C17 119.97 (19) C29—C31A—C25A 107.6 (3)
C28—C14—C17 122.10 (18) C32A—C31A—C27A 107.8 (3)
N9—C28—C14 120.20 (19) C29—C31A—C27A 111.2 (3)
N9—C28—C29 119.01 (19) C25A—C31A—C27A 108.0 (3)
C14—C28—C29 120.80 (19) C31A—C32A—C33A 111.2 (3)
O13—C11—C14 119.77 (19) C31A—C32A—H32A 109.4
O13—C11—C10 118.44 (18) C33A—C32A—H32A 109.4
C14—C11—C10 121.79 (19) C31A—C32A—H32B 109.4
C30—C29—C28 118.1 (2) C33A—C32A—H32B 109.4
C30—C29—C31A 120.8 (2) H32A—C32A—H32B 108.0
C28—C29—C31A 121.0 (2) N9—C33A—C32A 106.4 (3)
C30—C29—C31B 114.9 (4) N9—C33A—H33A 110.4
C28—C29—C31B 126.1 (4) C32A—C33A—H33A 110.4
C31A—C29—C31B 14.6 (4) N9—C33A—H33B 110.4
C29—C30—C10 123.4 (2) C32A—C33A—H33B 110.4
C29—C30—H30 118.3 H33A—C33A—H33B 108.6
C10—C30—H30 118.3 C31A—C25A—H25A 109.5
N8—C9—C10 122.1 (2) C31A—C25A—H25B 109.5
N8—C9—H9 118.9 H25A—C25A—H25B 109.5
C10—C9—H9 118.9 C31A—C25A—H25C 109.5
N9—C26—C22 109.41 (19) H25A—C25A—H25C 109.5
N9—C26—H26A 109.8 H25B—C25A—H25C 109.5
C22—C26—H26A 109.8 C31A—C27A—H27A 109.5
N9—C26—H26B 109.8 C31A—C27A—H27B 109.5
C22—C26—H26B 109.8 H27A—C27A—H27B 109.5
H26A—C26—H26B 108.2 C31A—C27A—H27C 109.5
C2—C3—C5 119.2 (2) H27A—C27A—H27C 109.5
C2—C3—H3 120.4 H27B—C27A—H27C 109.5
C5—C3—H3 120.4 C25B—C31B—C32B 109.6 (9)
C3—C2—C4 121.5 (2) C25B—C31B—C27B 112.2 (9)
C3—C2—Cl1 119.7 (2) C32B—C31B—C27B 105.4 (8)
C4—C2—Cl1 118.8 (2) C25B—C31B—C29 121.7 (8)
C17—C20—H20A 109.5 C32B—C31B—C29 107.0 (7)
C17—C20—H20B 109.5 C27B—C31B—C29 99.6 (8)
H20A—C20—H20B 109.5 C31B—C32B—C33B 106.4 (9)
C17—C20—H20C 109.5 C31B—C32B—H32C 110.4
H20A—C20—H20C 109.5 C33B—C32B—H32C 110.4
H20B—C20—H20C 109.5 C31B—C32B—H32D 110.4
C22—C17—C20 110.06 (19) C33B—C32B—H32D 110.4
C22—C17—C14 109.37 (18) H32C—C32B—H32D 108.6
C20—C17—C14 110.74 (18) N9—C33B—C32B 117.3 (9)
C22—C17—C21 106.53 (19) N9—C33B—H33C 108.0
C20—C17—C21 109.19 (19) C32B—C33B—H33C 108.0
C14—C17—C21 110.87 (18) N9—C33B—H33D 108.0
C6—C4—C2 118.7 (3) C32B—C33B—H33D 108.0
C6—C4—H4 120.6 H33C—C33B—H33D 107.2
C2—C4—H4 120.6 C31B—C25B—H25D 109.5
C4—C6—C7 121.1 (2) C31B—C25B—H25E 109.5
C4—C6—H6 119.4 H25D—C25B—H25E 109.5
C7—C6—H6 119.4 C31B—C25B—H25F 109.5
C7—C5—C3 120.4 (2) H25D—C25B—H25F 109.5
C7—C5—H5 119.8 H25E—C25B—H25F 109.5
C3—C5—H5 119.8 C31B—C27B—H27D 109.5
C6—C7—C5 119.1 (2) C31B—C27B—H27E 109.5
C6—C7—N8 116.4 (2) H27D—C27B—H27E 109.5
C5—C7—N8 124.4 (2) C31B—C27B—H27F 109.5
C17—C21—H21A 109.5 H27D—C27B—H27F 109.5
C17—C21—H21B 109.5 H27E—C27B—H27F 109.5
C33A—N9—C28—C14 162.8 (3) C2—C4—C6—C7 −0.2 (4)
C26—N9—C28—C14 12.0 (3) C2—C3—C5—C7 1.6 (4)
C33B—N9—C28—C14 177.2 (7) C4—C6—C7—C5 0.9 (4)
C33A—N9—C28—C29 −17.5 (4) C4—C6—C7—N8 178.2 (2)
C26—N9—C28—C29 −168.3 (2) C3—C5—C7—C6 −1.7 (4)
C33B—N9—C28—C29 −3.1 (7) C3—C5—C7—N8 −178.7 (2)
C11—C14—C28—N9 −174.10 (19) C9—N8—C7—C6 156.8 (2)
C17—C14—C28—N9 6.6 (3) C9—N8—C7—C5 −26.1 (4)
C11—C14—C28—C29 6.2 (3) N9—C26—C22—C17 61.8 (3)
C17—C14—C28—C29 −173.14 (19) C20—C17—C22—C26 78.4 (3)
C28—C14—C11—O13 174.30 (19) C14—C17—C22—C26 −43.4 (3)
C17—C14—C11—O13 −6.4 (3) C21—C17—C22—C26 −163.3 (2)
C28—C14—C11—C10 −5.8 (3) C30—C29—C31A—C32A 169.0 (3)
C17—C14—C11—C10 173.53 (19) C28—C29—C31A—C32A −6.0 (4)
C30—C10—C11—O13 −177.8 (2) C31B—C29—C31A—C32A −120.9 (19)
C9—C10—C11—O13 3.1 (3) C30—C29—C31A—C25A −69.7 (4)
C30—C10—C11—C14 2.3 (3) C28—C29—C31A—C25A 115.3 (3)
C9—C10—C11—C14 −176.8 (2) C31B—C29—C31A—C25A 0.4 (17)
N9—C28—C29—C30 177.2 (2) C30—C29—C31A—C27A 48.4 (4)
C14—C28—C29—C30 −3.1 (3) C28—C29—C31A—C27A −126.6 (3)
N9—C28—C29—C31A −7.7 (4) C31B—C29—C31A—C27A 118.5 (19)
C14—C28—C29—C31A 172.1 (3) C29—C31A—C32A—C33A 40.8 (4)
N9—C28—C29—C31B 8.8 (7) C25A—C31A—C32A—C33A −78.8 (4)
C14—C28—C29—C31B −171.5 (6) C27A—C31A—C32A—C33A 163.4 (3)
C28—C29—C30—C10 −0.6 (3) C28—N9—C33A—C32A 51.5 (4)
C31A—C29—C30—C10 −175.8 (3) C26—N9—C33A—C32A −156.5 (3)
C31B—C29—C30—C10 169.1 (5) C33B—N9—C33A—C32A −30 (3)
C11—C10—C30—C29 1.0 (3) C31A—C32A—C33A—N9 −62.5 (4)
C9—C10—C30—C29 −179.8 (2) C30—C29—C31B—C25B −21.9 (11)
C7—N8—C9—C10 177.1 (2) C28—C29—C31B—C25B 146.8 (7)
C30—C10—C9—N8 178.4 (2) C31A—C29—C31B—C25B −139 (2)
C11—C10—C9—N8 −2.4 (3) C30—C29—C31B—C32B −148.8 (6)
C28—N9—C26—C22 −45.4 (3) C28—C29—C31B—C32B 20.0 (11)
C33A—N9—C26—C22 162.3 (3) C31A—C29—C31B—C32B 94 (2)
C33B—N9—C26—C22 150.1 (7) C30—C29—C31B—C27B 101.7 (6)
C5—C3—C2—C4 −0.9 (4) C28—C29—C31B—C27B −89.5 (7)
C5—C3—C2—Cl1 177.92 (18) C31A—C29—C31B—C27B −15.3 (14)
C11—C14—C17—C22 −169.2 (2) C25B—C31B—C32B—C33B 178.3 (9)
C28—C14—C17—C22 10.1 (3) C27B—C31B—C32B—C33B 57.4 (11)
C11—C14—C17—C20 69.3 (3) C29—C31B—C32B—C33B −48.0 (11)
C28—C14—C17—C20 −111.4 (2) C28—N9—C33B—C32B −32.1 (13)
C11—C14—C17—C21 −52.1 (3) C33A—N9—C33B—C32B 73 (3)
C28—C14—C17—C21 127.2 (2) C26—N9—C33B—C32B 132.6 (8)
C3—C2—C4—C6 0.1 (4) C31B—C32B—C33B—N9 59.4 (13)
Cl1—C2—C4—C6 −178.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O13—H13···N8 0.98 1.65 2.563 (2) 155

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2103).

References

  1. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Kantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813012579/lr2103sup1.cif

e-69-0o883-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012579/lr2103Isup2.hkl

e-69-0o883-Isup2.hkl (175.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012579/lr2103Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES