Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 15;69(Pt 6):o897. doi: 10.1107/S1600536813011410

5-Methyl-3-phenyl­isoxazole-4-carb­oxy­lic acid

Chandra a, N Srikantamurthy b, G J Vishalakshi a, S Jeyaseelan c, K B Umesha b, M Mahendra a,*
PMCID: PMC3685054  PMID: 23795073

Abstract

In the title compound, C11H9NO3, the phenyl and isoxazole rings form a dihedral angle of 56.64 (8)°. The carb­oxy group is almost in the same plane as the isoxazole ring with a C—C—C—O torsion angle of −3.3 (2)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules into head-to-head dimers. C—H⋯N hydrogen bonds and π–π stacking inter­actions between phenyl rings [centroid–centroid distance = 3.9614 (17)Å] link the dimers into a three-dimensional network.

Related literature  

For the biological and pharmaceutical importance of isoxazoles, see: Basappa et al., (2003); Conti et al. (1998); Kang et al. (2000); Lee et al. (2009); Shin et al. (2005); Stevens & Albizati (1984). For bond-length and angle data in related structures, see: Wolf et al. (1995); Chandra et al., (2013).graphic file with name e-69-0o897-scheme1.jpg

Experimental  

Crystal data  

  • C11H9NO3

  • M r = 203.19

  • Monoclinic, Inline graphic

  • a = 11.953 (4) Å

  • b = 5.981 (2) Å

  • c = 14.142 (5) Å

  • β = 105.548 (6)°

  • V = 974.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • 8619 measured reflections

  • 1712 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.111

  • S = 1.05

  • 1712 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011410/bg2504sup1.cif

e-69-0o897-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011410/bg2504Isup2.hkl

e-69-0o897-Isup2.hkl (84.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011410/bg2504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O15i 0.82 1.81 2.6252 (18) 172
C11—H11A⋯N8ii 0.96 2.51 3.427 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the UGC, New Delhi, Government of India, for awarding a project under the head F·No.41–920/2012(SR) dated: 25–07-2012.

supplementary crystallographic information

Comment

Isoxazole derivatives bearing various substituents are known to have diverse biological and pharmaceutical activities; such as anti-tumor (Kang et al., 2000), antiviral (Lee et al., 2009), hypoglycemic (Conti et al., 1998), antifungal (Basappa et al., 2003) and anti-HIV activities (Shin et al., 2005). In addition, isoxazoles and related compounds have attracted much interest because of their fungicidal, plant-growth regulating and antibacterial activities (Stevens & Albizati, 1984). As part of our interest in these compounds and our extensive background on isoxazole derivatives, we have synthesized the title compound to study its crystal structure.

Fig. 1 presents an ellipsoid plot of the title compound (I). The (C7/N8/O9/C10/C12) isoxazole ring is in Syn-Clinal conformation with respect to the (C1-C2-C3-C4-C5-C6) phenyl ring, as indicated by the (C1-C6-C7-N8) torsion angle of -54.40 (19)°. The carboxylic acid group at C12 is almost in the same plane as the isoxazole ring (C7-C12-C13-O15 torsion angle = -3.3 (2)°). The bond lengths and angles are within normal ranges and are comparable to related structure (Wolf et al., 1995 & Chandra et al., 2013). The crystal structure is stabilized by O—H···O bonds (Table 1), which define head to head dimers, and weaker C-H···N bonds (Table 1), thus defining planes parallel to (101) (Fig 2). Finally, there are π···π stacking interacions between phenyl rings with Cg···Cg[1-x,1-y,-z] and slippage displacement distances of 3.9614 (17)Å and 1.284Å respectively (Fig 3) which link planes into a 3D structure.

Experimental

A mixture of benzaldehyde oxime (1 mmol), ethyl acetoacetate (2 mmol) and anhydrous zinc chloride (0.1 mmol) were taken in a 10 ml round bottomed flask and the contents were gradually heated to 60°C without any solvent for about one hour. After completion of the reaction (as indicated by TLC), the mixture was cooled to room temperature and ethanol was added with stirring for about 30 min. The solid ethyl 5-methyl-3-phenylisoxazole-4-carboxylate thus obtained was treated with 5% NaOH (10 ml) at room temperature for about 4hr. After completion of the reaction (as indicated by TLC), the reaction mixture was acidified with 2 N HCl. The solids thus obtained were filtered and recrystalized from hot ethanol to get crystals of the title compound.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.96 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective diagram of the molecule with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the molecule viewed down the 'b' axis, showing the H-bonded dimers.

Fig. 3.

Fig. 3.

Packing diagram of the molecule viewed down the 'b' axis, showing the π–π interactions.

Crystal data

C11H9NO3 F(000) = 424
Mr = 203.19 Dx = 1.386 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1712 reflections
a = 11.953 (4) Å θ = 2.0–25.0°
b = 5.981 (2) Å µ = 0.10 mm1
c = 14.142 (5) Å T = 273 K
β = 105.548 (6)° Block, yellow
V = 974.0 (6) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Rint = 0.026
ω and φ scans θmax = 25.0°, θmin = 2.0°
8619 measured reflections h = −14→14
1712 independent reflections k = −7→7
1558 reflections with I > 2σ(I) l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.1799P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
1712 reflections Δρmax = 0.19 e Å3
138 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.078 (6)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O9 0.78858 (10) 0.77608 (19) −0.16618 (8) 0.0644 (4)
O14 0.98209 (9) 0.19333 (19) −0.09796 (8) 0.0626 (4)
O15 0.89662 (9) 0.16156 (18) 0.02382 (7) 0.0583 (4)
N8 0.72219 (12) 0.7544 (2) −0.09692 (10) 0.0627 (5)
C1 0.70696 (13) 0.6540 (3) 0.10434 (12) 0.0577 (5)
C2 0.65298 (14) 0.6027 (3) 0.17680 (13) 0.0667 (6)
C3 0.59319 (14) 0.4050 (3) 0.17315 (12) 0.0646 (6)
C4 0.58949 (14) 0.2546 (3) 0.09855 (13) 0.0634 (5)
C5 0.64525 (13) 0.3017 (3) 0.02718 (11) 0.0556 (5)
C6 0.70323 (11) 0.5035 (2) 0.02904 (9) 0.0458 (4)
C7 0.75633 (11) 0.5675 (2) −0.05041 (10) 0.0465 (4)
C10 0.85935 (12) 0.6006 (2) −0.15866 (10) 0.0503 (4)
C11 0.93670 (14) 0.6030 (3) −0.22477 (11) 0.0643 (6)
C12 0.84386 (10) 0.4605 (2) −0.08704 (9) 0.0445 (4)
C13 0.90974 (11) 0.2583 (2) −0.05073 (10) 0.0454 (4)
H1 0.74570 0.78940 0.10620 0.0690*
H2 0.65710 0.70230 0.22810 0.0800*
H3 0.55530 0.37280 0.22100 0.0780*
H4 0.54920 0.12080 0.09630 0.0760*
H5 0.64400 0.19820 −0.02220 0.0670*
H11A 0.91180 0.49090 −0.27460 0.0960*
H11B 1.01490 0.57240 −0.18750 0.0960*
H11C 0.93350 0.74740 −0.25510 0.0960*
H14 1.01490 0.07930 −0.07260 0.0940*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O9 0.0729 (7) 0.0625 (7) 0.0640 (7) 0.0040 (5) 0.0289 (6) 0.0164 (5)
O14 0.0661 (7) 0.0664 (7) 0.0657 (7) 0.0140 (5) 0.0357 (5) 0.0054 (5)
O15 0.0618 (6) 0.0630 (7) 0.0569 (6) 0.0092 (5) 0.0275 (5) 0.0080 (5)
N8 0.0654 (8) 0.0622 (8) 0.0683 (8) 0.0096 (6) 0.0312 (7) 0.0138 (6)
C1 0.0544 (8) 0.0569 (9) 0.0676 (9) −0.0019 (7) 0.0264 (7) −0.0099 (7)
C2 0.0636 (9) 0.0795 (11) 0.0660 (10) 0.0025 (8) 0.0328 (8) −0.0163 (8)
C3 0.0604 (9) 0.0801 (11) 0.0630 (9) 0.0064 (8) 0.0332 (7) 0.0068 (8)
C4 0.0634 (9) 0.0615 (9) 0.0722 (10) −0.0058 (7) 0.0304 (8) 0.0056 (8)
C5 0.0597 (9) 0.0553 (9) 0.0559 (8) −0.0029 (7) 0.0226 (7) −0.0044 (7)
C6 0.0397 (7) 0.0511 (8) 0.0488 (7) 0.0059 (5) 0.0155 (5) 0.0022 (6)
C7 0.0442 (7) 0.0481 (7) 0.0483 (7) −0.0006 (6) 0.0142 (6) 0.0001 (6)
C10 0.0513 (7) 0.0547 (8) 0.0459 (7) −0.0069 (6) 0.0147 (6) −0.0019 (6)
C11 0.0708 (10) 0.0761 (11) 0.0535 (9) −0.0162 (8) 0.0297 (8) −0.0023 (7)
C12 0.0430 (7) 0.0496 (7) 0.0425 (7) −0.0052 (5) 0.0145 (5) −0.0040 (5)
C13 0.0432 (7) 0.0510 (8) 0.0449 (7) −0.0037 (5) 0.0169 (5) −0.0059 (6)

Geometric parameters (Å, º)

O9—N8 1.4222 (19) C7—C12 1.4363 (19)
O9—C10 1.3342 (18) C10—C12 1.3649 (19)
O14—C13 1.2863 (18) C10—C11 1.481 (2)
O15—C13 1.2488 (17) C12—C13 1.4593 (18)
O14—H14 0.8200 C1—H1 0.9300
N8—C7 1.3057 (18) C2—H2 0.9300
C1—C2 1.384 (2) C3—H3 0.9300
C1—C6 1.386 (2) C4—H4 0.9300
C2—C3 1.375 (3) C5—H5 0.9300
C3—C4 1.378 (3) C11—H11A 0.9600
C4—C5 1.380 (2) C11—H11B 0.9600
C5—C6 1.389 (2) C11—H11C 0.9600
C6—C7 1.4813 (19)
O9···C10i 3.268 (2) C10···O15iii 3.345 (2)
O9···C11i 3.351 (2) C10···C13iii 3.566 (2)
O14···O15ii 2.6252 (18) C11···O14 2.999 (2)
O14···C11 2.999 (2) C11···O9iv 3.351 (2)
O15···C11iii 3.316 (2) C11···N8iv 3.427 (2)
O15···O14ii 2.6252 (18) C11···O15iii 3.316 (2)
O15···C13ii 3.367 (2) C12···C13iii 3.496 (2)
O15···C5 3.132 (2) C13···O15ii 3.367 (2)
O15···C6 3.102 (2) C13···C10iii 3.566 (2)
O15···C10iii 3.345 (2) C13···C12iii 3.496 (2)
O9···H11Ai 2.6500 C13···H14ii 2.6600
O14···H11B 2.6800 H1···N8 2.8200
O14···H14ii 2.9000 H11A···O9iv 2.6500
O15···H11Biii 2.7700 H11A···N8iv 2.5100
O15···H14ii 1.8100 H11B···O14 2.6800
N8···C11i 3.427 (2) H11B···O15iii 2.7700
N8···H1 2.8200 H14···O14ii 2.9000
N8···H11Ai 2.5100 H14···O15ii 1.8100
C5···O15 3.132 (2) H14···C13ii 2.6600
C6···O15 3.102 (2) H14···H14ii 2.3700
C10···O9iv 3.268 (2)
N8—O9—C10 109.41 (11) O14—C13—C12 116.24 (12)
C13—O14—H14 109.00 O15—C13—C12 120.20 (12)
O9—N8—C7 105.56 (12) O14—C13—O15 123.54 (12)
C2—C1—C6 119.97 (16) C2—C1—H1 120.00
C1—C2—C3 120.23 (16) C6—C1—H1 120.00
C2—C3—C4 119.98 (16) C1—C2—H2 120.00
C3—C4—C5 120.28 (16) C3—C2—H2 120.00
C4—C5—C6 120.02 (15) C2—C3—H3 120.00
C1—C6—C7 118.88 (12) C4—C3—H3 120.00
C5—C6—C7 121.56 (12) C3—C4—H4 120.00
C1—C6—C5 119.49 (13) C5—C4—H4 120.00
N8—C7—C6 117.63 (12) C4—C5—H5 120.00
N8—C7—C12 111.06 (12) C6—C5—H5 120.00
C6—C7—C12 131.31 (11) C10—C11—H11A 109.00
O9—C10—C11 115.59 (12) C10—C11—H11B 109.00
O9—C10—C12 109.44 (12) C10—C11—H11C 110.00
C11—C10—C12 134.94 (13) H11A—C11—H11B 110.00
C7—C12—C13 128.23 (11) H11A—C11—H11C 109.00
C10—C12—C13 127.03 (12) H11B—C11—H11C 109.00
C7—C12—C10 104.53 (11)
C10—O9—N8—C7 0.33 (15) C1—C6—C7—C12 124.36 (16)
N8—O9—C10—C11 −178.39 (12) C5—C6—C7—N8 122.44 (15)
N8—O9—C10—C12 −0.04 (15) N8—C7—C12—C10 0.45 (16)
O9—N8—C7—C12 −0.47 (15) N8—C7—C12—C13 175.43 (13)
O9—N8—C7—C6 178.53 (11) C6—C7—C12—C10 −178.37 (14)
C2—C1—C6—C5 −0.1 (2) C6—C7—C12—C13 −3.4 (2)
C6—C1—C2—C3 −1.6 (3) O9—C10—C12—C7 −0.23 (15)
C2—C1—C6—C7 176.80 (14) O9—C10—C12—C13 −175.28 (12)
C1—C2—C3—C4 1.7 (3) C11—C10—C12—C7 177.67 (16)
C2—C3—C4—C5 −0.2 (3) C11—C10—C12—C13 2.6 (3)
C3—C4—C5—C6 −1.5 (3) C7—C12—C13—O14 178.55 (13)
C4—C5—C6—C7 −175.22 (14) C7—C12—C13—O15 −3.3 (2)
C4—C5—C6—C1 1.6 (2) C10—C12—C13—O14 −7.5 (2)
C1—C6—C7—N8 −54.40 (19) C10—C12—C13—O15 170.61 (13)
C5—C6—C7—C12 −58.8 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z−1/2; (ii) −x+2, −y, −z; (iii) −x+2, −y+1, −z; (iv) −x+3/2, y−1/2, −z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O14—H14···O15ii 0.82 1.81 2.6252 (18) 172
C11—H11A···N8iv 0.96 2.51 3.427 (2) 159

Symmetry codes: (ii) −x+2, −y, −z; (iv) −x+3/2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2504).

References

  1. Basappa, M. P., Sadashiva, K., Mantelingu, S., Nanjunda, S. & Rangappa, K. S. (2003). Bioorg. Med. Chem. Lett. 11, 4539–4544. [DOI] [PubMed]
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandra, Raghu, K., Srikantamurthy, N., Umesha, K. B., Palani, K. & Mahendra, M. (2013). Acta Cryst. E69, o388. [DOI] [PMC free article] [PubMed]
  4. Conti, P., Dallanoce, C., Amici, M. D., Micheli, C. D. & Klotz, K. N. (1998). Bioorg. Med. Chem. 6, 401–408. [DOI] [PubMed]
  5. Kang, Y. Y., Shin, K. L., Yoo, K. H., Seo, K. J., Hong, C. Y., Lee, C. S., Park, S. Y., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 95–99. [DOI] [PubMed]
  6. Lee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439–41448. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.
  11. Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813011410/bg2504sup1.cif

e-69-0o897-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813011410/bg2504Isup2.hkl

e-69-0o897-Isup2.hkl (84.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813011410/bg2504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES