Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 18;69(Pt 6):o917. doi: 10.1107/S160053681301266X

2-Acetyl­amino-1,3,4,6-tetra-O-(tri­methyl­silyl)-2-de­oxy-α-d-gluco­pyran­ose

Zhao-Dong Cheng a, Yan-Li Cui a,*, Jian-Wei Mao b
PMCID: PMC3685068  PMID: 23795087

Abstract

The title compound, C20H47NO6Si4, was synthesized by per-O-tri­methyl­silylation of N-acetyl-d-glucosa­mine using chloro­tri­methyl­silane in the presence of hexa­methyl­disiloxane. The tri­methyl­silyl group and acetamido group are located on the same side of the pyran ring, showing an α-configuration glycoside. One of the tri­methyl­silyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the a-axis direction.

Related literature  

For background to the title compound, see: Augé et al. (1985); Ronnow et al. (1994); Du & Gervais-Hague (2005); Wang et al. (2007); Witschi & Gervais-Hague (2010). For related structures, see: Odinokov et al. (2002); Hu et al. (2011). For the synthesis, see: Loganathan & Trivedi (1987); Jervis et al. (2010).graphic file with name e-69-0o917-scheme1.jpg

Experimental  

Crystal data  

  • C20H47NO6Si4

  • M r = 509.95

  • Orthorhombic, Inline graphic

  • a = 9.4500 (7) Å

  • b = 12.8824 (9) Å

  • c = 27.295 (3) Å

  • V = 3322.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.19 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.926, T max = 0.962

  • 9896 measured reflections

  • 3438 independent reflections

  • 2105 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.149

  • S = 1.01

  • 3438 reflections

  • 309 parameters

  • 183 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681301266X/zq2199sup1.cif

e-69-0o917-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301266X/zq2199Isup2.hkl

e-69-0o917-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.03 2.855 (4) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the National Science Foundation of China (No. 30870553) and the Key Inter­national S&T Cooperation Project, China (No. 2010DFA34370).

supplementary crystallographic information

Comment

Per-O-trimethylsilylated glycopyranose was an useful intermediate for the construction of oligosaccharides and glycoconjugates (Du & Gervais-Hague, 2005). Per-trimethylsilylation of unprotected sugar could increase its solubility in organic solvents, and made selective acetylation available (Witschi et al., 2010). Hu et al. have developed an one-pot α-glycoside method which also used per-O-trimethylsilylated glycosides as starting materials (Hu et al., 2011; Wang et al., 2007). Currently we have applied considerable effort towards the construction of α-glycosides (Augé et al., 1985; Ronnow et al., 1994; Jervis et al., 2010). We have synthesized the title compound and report its crystal structure herein (for related structures, see: Odinokov et al., 2002; Hu et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the trimethylsilyl group and acetamido group are located on the same side of the pyran ring, showing α configuration glycoside. One of the trimethylsilyl group is disordered over two orientations with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal structure, weak intermolecular N—H···O hydrogen bonds link the molecules into supramolecular chains along the a axis in the crystal (Fig. 2).

Experimental

To a solution of N-acetyl-D-glucosamine (1.0 g, 4.52 mmol) in pyridine (10 mL), hexamethyldisiloxane (HMDS) (8.0 mL, 38.90 mmol) and chlorotrimethylsilane (TMSCl) (4.0 mL, 31.64 mmol) were added sequentially. The solution was stirred at 353 K under a nitrogen atmosphere for 2 hours. After cooling to rt the mixture was poured into ice-water and extracted with hexane. The organic layers were washed with brine, dried with MgSO4, filtered, and concentrated in vacuum to furnish the crude product. The residue was purified by silica gel chromatography (petroether/ethyl acetate = 15:1) to afford the title compound. The crystal suitable for X-ray data collection was obtained by slow evaporation from a methanol solution (Jervis et al., 2010; Loganathan et al., 1987).

Refinement

One of the trimethylsilyl group is disordered over two orientations with site-occupancy factors of 0.625 (9) and 0.375 (9). Some restraints and constraints had to be used to correct the geometry of the disordered components and the thermal parameters of the corresponding atoms. All H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for the methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound showing N—H···O hydrogen bonds.

Crystal data

C20H47NO6Si4 F(000) = 1112
Mr = 509.95 Dx = 1.019 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1672 reflections
a = 9.4500 (7) Å θ = 3.2–29.6°
b = 12.8824 (9) Å µ = 0.21 mm1
c = 27.295 (3) Å T = 293 K
V = 3322.9 (5) Å3 Needle, colourless
Z = 4 0.38 × 0.20 × 0.19 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 3438 independent reflections
Radiation source: fine-focus sealed tube 2105 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 10.3592 pixels mm-1 θmax = 25.4°, θmin = 3.2°
ω scans h = −11→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −12→15
Tmin = 0.926, Tmax = 0.962 l = −30→32
9896 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.3973P] where P = (Fo2 + 2Fc2)/3
3438 reflections (Δ/σ)max < 0.001
309 parameters Δρmax = 0.26 e Å3
183 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Si1 1.01789 (16) 0.89841 (11) 0.87673 (6) 0.0716 (4)
Si2 1.03616 (19) 0.43173 (13) 0.99519 (7) 0.0911 (6)
Si3 0.9320 (2) 0.31145 (12) 0.84396 (7) 0.0842 (5)
Si4 0.5209 (19) 0.5532 (8) 0.7757 (5) 0.1318 (13) 0.625 (9)
O1 0.7944 (3) 0.6870 (3) 0.85017 (13) 0.0726 (9)
O2 0.9849 (3) 0.7739 (2) 0.88456 (12) 0.0662 (9)
O3 0.7055 (3) 0.7511 (5) 1.00819 (18) 0.1157 (16)
O4 0.9211 (3) 0.4785 (3) 0.95578 (13) 0.0731 (10)
O5 0.9704 (4) 0.4351 (3) 0.85373 (13) 0.0751 (9)
O6 0.6763 (5) 0.5183 (4) 0.79227 (17) 0.1117 (16)
N1 0.9130 (3) 0.7012 (3) 0.97859 (14) 0.0604 (11)
H1 1.0030 0.6991 0.9831 0.072*
C1 0.8492 (5) 0.7328 (4) 0.8930 (2) 0.0646 (13)
H1A 0.7863 0.7895 0.9029 0.077*
C2 0.8562 (4) 0.6535 (4) 0.93482 (18) 0.0581 (12)
H2 0.7590 0.6320 0.9421 0.070*
C3 0.9380 (4) 0.5563 (4) 0.91906 (17) 0.0593 (12)
H3 1.0386 0.5733 0.9156 0.071*
C4 0.8818 (5) 0.5161 (4) 0.87110 (18) 0.0612 (12)
H4 0.7863 0.4886 0.8762 0.073*
C5 0.8759 (5) 0.6012 (4) 0.83238 (19) 0.0690 (14)
H5 0.9723 0.6250 0.8253 0.083*
C6 1.0050 (8) 0.9663 (5) 0.9361 (2) 0.113 (2)
H6A 0.9109 0.9591 0.9489 0.170*
H6B 1.0262 1.0386 0.9316 0.170*
H6C 1.0714 0.9366 0.9588 0.170*
C7 1.1984 (6) 0.9046 (5) 0.8523 (2) 0.0970 (19)
H7A 1.2648 0.8907 0.8781 0.146*
H7B 1.2156 0.9726 0.8392 0.146*
H7C 1.2093 0.8538 0.8269 0.146*
C8 0.8876 (7) 0.9521 (5) 0.8333 (3) 0.113 (2)
H8A 0.8682 0.9019 0.8082 0.169*
H8B 0.9251 1.0140 0.8186 0.169*
H8C 0.8017 0.9684 0.8504 0.169*
C9 0.8345 (5) 0.7478 (5) 1.0119 (2) 0.0715 (15)
C10 0.9086 (6) 0.7965 (5) 1.0546 (2) 0.0879 (17)
H10A 0.9505 0.8610 1.0446 0.132*
H10B 0.9812 0.7505 1.0662 0.132*
H10C 0.8417 0.8092 1.0804 0.132*
C11 1.0461 (9) 0.5095 (7) 1.0526 (2) 0.140 (3)
H11A 1.0800 0.5780 1.0452 0.209*
H11B 1.1097 0.4765 1.0752 0.209*
H11C 0.9537 0.5141 1.0671 0.209*
C12 1.2153 (7) 0.4319 (6) 0.9680 (3) 0.129 (3)
H12A 1.2113 0.4030 0.9356 0.194*
H12B 1.2776 0.3909 0.9880 0.194*
H12C 1.2500 0.5018 0.9663 0.194*
C13 0.9806 (11) 0.2963 (6) 1.0071 (4) 0.163 (4)
H13A 0.8920 0.2963 1.0243 0.245*
H13B 1.0511 0.2621 1.0266 0.245*
H13C 0.9698 0.2603 0.9765 0.245*
C14 1.0962 (9) 0.2396 (5) 0.8588 (3) 0.132 (3)
H14A 1.1755 0.2733 0.8436 0.198*
H14B 1.0888 0.1697 0.8468 0.198*
H14C 1.1094 0.2384 0.8937 0.198*
C15 0.7800 (8) 0.2703 (6) 0.8809 (3) 0.124 (3)
H15A 0.7923 0.2935 0.9140 0.185*
H15B 0.7732 0.1959 0.8803 0.185*
H15C 0.6950 0.2998 0.8676 0.185*
C16 0.8882 (11) 0.2878 (5) 0.7775 (3) 0.140 (3)
H16A 0.8026 0.3239 0.7692 0.210*
H16B 0.8754 0.2147 0.7721 0.210*
H16C 0.9642 0.3126 0.7573 0.210*
C17 0.8067 (7) 0.5670 (5) 0.7852 (2) 0.0922 (18)
H17A 0.7933 0.6271 0.7643 0.111*
H17B 0.8697 0.5195 0.7683 0.111*
C18A 0.4994 (16) 0.7084 (13) 0.7939 (6) 0.161 (3) 0.625 (9)
H18A 0.5411 0.7212 0.8254 0.242* 0.625 (9)
H18B 0.4013 0.7276 0.7946 0.242* 0.625 (9)
H18C 0.5476 0.7488 0.7695 0.242* 0.625 (9)
C19 0.5118 (19) 0.5859 (15) 0.7098 (5) 0.151 (3) 0.625 (9)
H19A 0.5719 0.6443 0.7032 0.226* 0.625 (9)
H19B 0.4161 0.6028 0.7012 0.226* 0.625 (9)
H19C 0.5428 0.5275 0.6908 0.226* 0.625 (9)
C20A 0.3849 (15) 0.4802 (14) 0.8078 (6) 0.170 (3) 0.625 (9)
H20A 0.3810 0.4162 0.7898 0.255* 0.625 (9)
H20B 0.2932 0.5124 0.8076 0.255* 0.625 (9)
H20C 0.4128 0.4665 0.8410 0.255* 0.625 (9)
Si4A 0.515 (3) 0.5685 (12) 0.7787 (8) 0.1318 (13) 0.375 (9)
C18 0.445 (3) 0.639 (2) 0.8231 (9) 0.161 (3) 0.375 (9)
H18D 0.4651 0.6110 0.8550 0.242* 0.375 (9)
H18E 0.3448 0.6441 0.8186 0.242* 0.375 (9)
H18F 0.4868 0.7069 0.8204 0.242* 0.375 (9)
C20 0.432 (3) 0.4260 (15) 0.7663 (10) 0.170 (3) 0.375 (9)
H20D 0.4911 0.3823 0.7465 0.255* 0.375 (9)
H20E 0.3431 0.4366 0.7502 0.255* 0.375 (9)
H20F 0.4164 0.3934 0.7975 0.255* 0.375 (9)
C19A 0.480 (3) 0.526 (3) 0.7151 (9) 0.151 (3) 0.375 (9)
H19D 0.5197 0.5750 0.6926 0.226* 0.375 (9)
H19E 0.3795 0.5215 0.7100 0.226* 0.375 (9)
H19F 0.5217 0.4589 0.7098 0.226* 0.375 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0804 (9) 0.0542 (8) 0.0802 (9) −0.0045 (7) 0.0034 (8) 0.0013 (8)
Si2 0.1054 (12) 0.0709 (10) 0.0970 (12) 0.0005 (9) −0.0386 (10) 0.0153 (9)
Si3 0.1152 (12) 0.0534 (8) 0.0839 (10) −0.0089 (9) −0.0044 (10) −0.0025 (8)
Si4 0.1162 (18) 0.180 (3) 0.0987 (19) 0.026 (3) −0.0233 (15) −0.043 (2)
O1 0.078 (2) 0.058 (2) 0.082 (2) 0.0030 (19) −0.0269 (19) 0.001 (2)
O2 0.0583 (17) 0.0556 (19) 0.085 (2) −0.0022 (15) −0.0030 (16) −0.0010 (17)
O3 0.0407 (19) 0.177 (4) 0.129 (4) 0.011 (2) 0.009 (2) −0.036 (3)
O4 0.0725 (19) 0.068 (2) 0.079 (2) −0.0113 (19) −0.0134 (18) 0.0178 (19)
O5 0.087 (2) 0.0523 (18) 0.086 (2) 0.0013 (19) −0.0010 (19) 0.0020 (18)
O6 0.130 (3) 0.094 (3) 0.111 (3) −0.025 (3) −0.054 (3) 0.004 (3)
N1 0.0321 (15) 0.079 (3) 0.070 (3) 0.0023 (19) 0.0012 (18) −0.009 (2)
C1 0.054 (3) 0.059 (3) 0.080 (4) 0.006 (2) −0.008 (2) −0.004 (3)
C2 0.038 (2) 0.069 (3) 0.067 (3) −0.001 (2) −0.005 (2) 0.000 (3)
C3 0.048 (2) 0.058 (3) 0.072 (3) −0.005 (2) −0.005 (2) 0.010 (3)
C4 0.064 (3) 0.052 (3) 0.067 (3) −0.008 (2) −0.009 (2) 0.000 (3)
C5 0.076 (3) 0.057 (3) 0.074 (3) −0.001 (3) −0.008 (3) 0.000 (3)
C6 0.158 (6) 0.078 (4) 0.104 (5) −0.008 (4) 0.023 (5) −0.022 (4)
C7 0.100 (4) 0.096 (5) 0.095 (4) −0.015 (4) −0.003 (4) 0.010 (4)
C8 0.112 (5) 0.074 (4) 0.153 (7) 0.011 (4) −0.012 (4) 0.027 (5)
C9 0.047 (3) 0.088 (4) 0.080 (4) 0.002 (3) 0.005 (3) 0.004 (3)
C10 0.073 (3) 0.116 (5) 0.074 (4) 0.005 (4) 0.008 (3) −0.014 (4)
C11 0.167 (7) 0.158 (7) 0.093 (5) 0.037 (6) −0.053 (5) 0.003 (5)
C12 0.099 (5) 0.118 (6) 0.172 (7) 0.030 (5) −0.046 (5) 0.004 (6)
C13 0.186 (8) 0.117 (6) 0.186 (9) −0.038 (6) −0.079 (7) 0.073 (6)
C14 0.157 (6) 0.056 (4) 0.183 (9) 0.009 (4) −0.006 (6) −0.007 (5)
C15 0.148 (6) 0.089 (5) 0.134 (6) −0.038 (5) 0.013 (5) −0.015 (5)
C16 0.244 (10) 0.087 (5) 0.089 (5) −0.013 (6) −0.029 (6) −0.012 (4)
C17 0.128 (5) 0.076 (4) 0.072 (4) −0.005 (4) −0.026 (4) 0.002 (3)
C18A 0.143 (5) 0.204 (7) 0.137 (6) 0.032 (5) −0.018 (5) −0.040 (5)
C19 0.128 (5) 0.202 (7) 0.122 (5) 0.031 (6) −0.036 (4) −0.032 (6)
C20A 0.145 (5) 0.218 (7) 0.148 (6) 0.008 (6) −0.015 (5) −0.032 (6)
Si4A 0.1162 (18) 0.180 (3) 0.0987 (19) 0.026 (3) −0.0233 (15) −0.043 (2)
C18 0.143 (5) 0.204 (7) 0.137 (6) 0.032 (5) −0.018 (5) −0.040 (5)
C20 0.145 (5) 0.218 (7) 0.148 (6) 0.008 (6) −0.015 (5) −0.032 (6)
C19A 0.128 (5) 0.202 (7) 0.122 (5) 0.031 (6) −0.036 (4) −0.032 (6)

Geometric parameters (Å, º)

Si1—O2 1.649 (4) C9—C10 1.498 (8)
Si1—C7 1.833 (6) C10—H10A 0.9600
Si1—C8 1.845 (7) C10—H10B 0.9600
Si1—C6 1.847 (6) C10—H10C 0.9600
Si2—O4 1.644 (4) C11—H11A 0.9600
Si2—C12 1.848 (8) C11—H11B 0.9600
Si2—C13 1.851 (8) C11—H11C 0.9600
Si2—C11 1.863 (7) C12—H12A 0.9600
Si3—O5 1.655 (4) C12—H12B 0.9600
Si3—C15 1.833 (7) C12—H12C 0.9600
Si3—C14 1.851 (8) C13—H13A 0.9600
Si3—C16 1.886 (7) C13—H13B 0.9600
Si4—O6 1.60 (2) C13—H13C 0.9600
Si4—C18 1.846 (10) C14—H14A 0.9600
Si4—C19 1.850 (9) C14—H14B 0.9600
Si4—C20 1.858 (10) C14—H14C 0.9600
O1—C1 1.408 (6) C15—H15A 0.9600
O1—C5 1.432 (6) C15—H15B 0.9600
O2—C1 1.406 (6) C15—H15C 0.9600
O3—C9 1.224 (5) C16—H16A 0.9600
O4—C3 1.427 (5) C16—H16B 0.9600
O5—C4 1.419 (6) C16—H16C 0.9600
O6—C17 1.396 (7) C17—H17A 0.9700
O6—Si4A 1.69 (3) C17—H17B 0.9700
N1—C9 1.317 (6) C18A—Si4A 1.856 (10)
N1—C2 1.447 (6) C18A—H18A 0.9600
N1—H1 0.8600 C18A—H18B 0.9600
C1—C2 1.532 (7) C18A—H18C 0.9600
C1—H1A 0.9800 C19—H19A 0.9600
C2—C3 1.533 (6) C19—H19B 0.9600
C2—H2 0.9800 C19—H19C 0.9600
C3—C4 1.505 (6) C20A—Si4A 1.856 (10)
C3—H3 0.9800 C20A—H20A 0.9600
C4—C5 1.525 (7) C20A—H20B 0.9600
C4—H4 0.9800 C20A—H20C 0.9600
C5—C17 1.511 (7) Si4A—C19A 1.851 (10)
C5—H5 0.9800 C18—H18D 0.9600
C6—H6A 0.9600 C18—H18E 0.9600
C6—H6B 0.9600 C18—H18F 0.9600
C6—H6C 0.9600 C20—H20D 0.9600
C7—H7A 0.9600 C20—H20E 0.9600
C7—H7B 0.9600 C20—H20F 0.9600
C7—H7C 0.9600 C19A—H19D 0.9600
C8—H8A 0.9600 C19A—H19E 0.9600
C8—H8B 0.9600 C19A—H19F 0.9600
C8—H8C 0.9600
O2—Si1—C7 105.4 (3) Si1—C8—H8C 109.5
O2—Si1—C8 108.8 (3) H8A—C8—H8C 109.5
C7—Si1—C8 111.8 (3) H8B—C8—H8C 109.5
O2—Si1—C6 109.6 (3) O3—C9—N1 121.3 (5)
C7—Si1—C6 111.1 (3) O3—C9—C10 121.0 (5)
C8—Si1—C6 110.1 (4) N1—C9—C10 117.7 (4)
O4—Si2—C12 110.0 (3) C9—C10—H10A 109.5
O4—Si2—C13 105.8 (3) C9—C10—H10B 109.5
C12—Si2—C13 109.4 (4) H10A—C10—H10B 109.5
O4—Si2—C11 112.8 (3) C9—C10—H10C 109.5
C12—Si2—C11 106.9 (4) H10A—C10—H10C 109.5
C13—Si2—C11 111.9 (5) H10B—C10—H10C 109.5
O5—Si3—C15 111.2 (3) Si2—C11—H11A 109.5
O5—Si3—C14 105.2 (3) Si2—C11—H11B 109.5
C15—Si3—C14 113.1 (4) H11A—C11—H11B 109.5
O5—Si3—C16 111.0 (3) Si2—C11—H11C 109.5
C15—Si3—C16 108.0 (4) H11A—C11—H11C 109.5
C14—Si3—C16 108.3 (4) H11B—C11—H11C 109.5
O6—Si4—C18 109.0 (12) Si2—C12—H12A 109.5
O6—Si4—C19 112.4 (9) Si2—C12—H12B 109.5
C18—Si4—C19 121.8 (15) H12A—C12—H12B 109.5
O6—Si4—C20 101.9 (11) Si2—C12—H12C 109.5
C18—Si4—C20 116.8 (15) H12A—C12—H12C 109.5
C19—Si4—C20 92.6 (13) H12B—C12—H12C 109.5
C1—O1—C5 114.0 (3) Si2—C13—H13A 109.5
C1—O2—Si1 124.1 (3) Si2—C13—H13B 109.5
C3—O4—Si2 130.0 (3) H13A—C13—H13B 109.5
C4—O5—Si3 129.2 (3) Si2—C13—H13C 109.5
C17—O6—Si4 130.2 (5) H13A—C13—H13C 109.5
C17—O6—Si4A 126.2 (7) H13B—C13—H13C 109.5
C9—N1—C2 123.7 (4) Si3—C14—H14A 109.5
C9—N1—H1 118.2 Si3—C14—H14B 109.5
C2—N1—H1 118.2 H14A—C14—H14B 109.5
O2—C1—O1 110.9 (4) Si3—C14—H14C 109.5
O2—C1—C2 109.5 (3) H14A—C14—H14C 109.5
O1—C1—C2 110.8 (4) H14B—C14—H14C 109.5
O2—C1—H1A 108.5 Si3—C15—H15A 109.5
O1—C1—H1A 108.5 Si3—C15—H15B 109.5
C2—C1—H1A 108.5 H15A—C15—H15B 109.5
N1—C2—C1 110.3 (4) Si3—C15—H15C 109.5
N1—C2—C3 113.1 (3) H15A—C15—H15C 109.5
C1—C2—C3 110.9 (4) H15B—C15—H15C 109.5
N1—C2—H2 107.4 Si3—C16—H16A 109.5
C1—C2—H2 107.4 Si3—C16—H16B 109.5
C3—C2—H2 107.4 H16A—C16—H16B 109.5
O4—C3—C4 109.2 (4) Si3—C16—H16C 109.5
O4—C3—C2 108.7 (4) H16A—C16—H16C 109.5
C4—C3—C2 110.3 (4) H16B—C16—H16C 109.5
O4—C3—H3 109.5 O6—C17—C5 113.3 (5)
C4—C3—H3 109.5 O6—C17—H17A 108.9
C2—C3—H3 109.5 C5—C17—H17A 108.9
O5—C4—C3 109.6 (4) O6—C17—H17B 108.9
O5—C4—C5 108.6 (4) C5—C17—H17B 108.9
C3—C4—C5 111.6 (4) H17A—C17—H17B 107.7
O5—C4—H4 109.0 Si4A—C18A—H18A 109.5
C3—C4—H4 109.0 Si4A—C18A—H18B 109.5
C5—C4—H4 109.0 H18A—C18A—H18B 109.5
O1—C5—C17 106.4 (4) Si4A—C18A—H18C 109.5
O1—C5—C4 109.9 (4) H18A—C18A—H18C 109.5
C17—C5—C4 113.4 (4) H18B—C18A—H18C 109.5
O1—C5—H5 109.0 Si4A—C20A—H20A 109.5
C17—C5—H5 109.0 Si4A—C20A—H20B 109.5
C4—C5—H5 109.0 H20A—C20A—H20B 109.5
Si1—C6—H6A 109.5 Si4A—C20A—H20C 109.5
Si1—C6—H6B 109.5 H20A—C20A—H20C 109.5
H6A—C6—H6B 109.5 H20B—C20A—H20C 109.5
Si1—C6—H6C 109.5 O6—Si4A—C19A 104.8 (14)
H6A—C6—H6C 109.5 O6—Si4A—C18A 113.3 (14)
H6B—C6—H6C 109.5 C19A—Si4A—C18A 118.8 (17)
Si1—C7—H7A 109.5 O6—Si4A—C20A 105.7 (12)
Si1—C7—H7B 109.5 C19A—Si4A—C20A 95.6 (16)
H7A—C7—H7B 109.5 C18A—Si4A—C20A 116.5 (14)
Si1—C7—H7C 109.5 Si4A—C19A—H19D 109.5
H7A—C7—H7C 109.5 Si4A—C19A—H19E 109.5
H7B—C7—H7C 109.5 H19D—C19A—H19E 109.5
Si1—C8—H8A 109.5 Si4A—C19A—H19F 109.5
Si1—C8—H8B 109.5 H19D—C19A—H19F 109.5
H8A—C8—H8B 109.5 H19E—C19A—H19F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.86 2.03 2.855 (4) 160

Symmetry code: (i) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2199).

References

  1. Agilent (2011). CrysAlis PRO, Agilent Technologies, Yarnton, England.
  2. Augé, C., David, S., Gautheron, C. & Veyrières, A. (1985). Tetrahedron Lett. 26, 2439–2440.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Du, W. & Gervais-Hague, J. (2005). Org. Lett. 7, 2063–2065. [DOI] [PubMed]
  5. Hu, Y.-P., Lin, S.-Y., Huang, C.-Y., Zulueta, M. M., Liu, J.-Y., Chang, W. & Hung, S.-C. (2011). Nat. Chem. 3, 557–563. [DOI] [PubMed]
  6. Jervis, P. J., Veerapen, N., Bricard, G., Cox, L. R., Porcelli, S. A. & Besra, G. S. (2010). Bioorg. Med. Chem. Lett. 20, 3475–3478. [DOI] [PMC free article] [PubMed]
  7. Loganathan, D. & Trivedi, G. K. (1987). Carbohydr. Res. 162, 117–125.
  8. Odinokov, V. N., Savchenko, R. G., Nazmeeva, S. R., Galyautdinov, I. V. & Khalilov, L. M. (2002). Russ. Chem. Bull. 51, 1937–1939.
  9. Ronnow, T. E. C. L., Meldal, M. & Bock, K. (1994). Carbohydr. Res. 260, 323–328. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wang, C.-C., Lee, J.-C., Luo, S.-Y., Kulkarni, S.-S., Huang, Y.-W., Lee, C.-C., Chang, K.-L. & Hung, S.-C. (2007). Nature, 446, 896–899. [DOI] [PubMed]
  12. Witschi, M. A. & Gervais-Hague, J. (2010). Org. Lett. 12, 4312–4315. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681301266X/zq2199sup1.cif

e-69-0o917-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301266X/zq2199Isup2.hkl

e-69-0o917-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES