Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 22;69(Pt 6):o931–o932. doi: 10.1107/S1600536813012774

4-(4-Bromo­phen­yl)-2-methyl­amino-3-nitro-5,6,7,8-tetra­hydro-4H-chromen-5-one

P Narayanan a, Jayabal Kamalraja b, Paramasivam T Perumal b, K Sethusankar a,*
PMCID: PMC3685080  PMID: 23795099

Abstract

In the title compound, C16H15BrN2O4, the six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation with the disordered methyl­ene C atom as the flap. The pyran ring is almost orthogonal to the chloro­phenyl ring, making a dihedral angle of 87.11 (12)°. The amine-group N atom deviates significantly from the pyran ring [0.238 (3) Å]. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, which generate C(8) chains running parallel to the b axis. The chains are linked by C—H⋯π inter­actions. The methyl­ene-group C atom of the chromene system that is disordered, along with its attached H atoms and the H atoms on the two adjacent C atoms, has an occupancy ratio of 0.791 (7):0.209 (7).

Related literature  

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For a related structure, see: Sun et al. (2012). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-69-0o931-scheme1.jpg

Experimental  

Crystal data  

  • C16H15BrN2O4

  • M r = 379.18

  • Monoclinic, Inline graphic

  • a = 8.1114 (9) Å

  • b = 10.8530 (13) Å

  • c = 18.222 (2) Å

  • β = 94.399 (6)°

  • V = 1599.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.464, T max = 0.523

  • 12198 measured reflections

  • 3130 independent reflections

  • 2053 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.101

  • S = 1.04

  • 3130 reflections

  • 218 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813012774/su2597sup1.cif

e-69-0o931-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012774/su2597Isup2.hkl

e-69-0o931-Isup2.hkl (150.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012774/su2597Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the pyran ring (C7/C8/C13/O1/C14/C15).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.90 (2) 1.89 (2) 2.595 (3) 134 (2)
C2—H2⋯O4i 0.93 2.55 3.442 (4) 162
C10—H10BCg1ii 0.97 2.77 3.527 (3) 136
C16—H16BCg1iii 0.96 2.73 3.606 (4) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

Comment

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, etc. (Khan et al., 2010, Raj et al., 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The title compound, Fig. 1, consists of a chromene moiety attached to a chlorophenyl ring, a nitro group and a methylamine group. The molecular structure is stabilized by an intramolecular N—H···O hydrogen bonds, which generates an S(6) ring motif (Table 1 and Fig. 1). The methylene group carbon atom C11 of the chromene moiety is disordered over two positions (C11/C11') with an occupancy ratio of 0.791 (7): 0.209 (7). The pyran ring (C7/C8/C13-C15/O1) makes a dihedral angle of 87.11 (12) ° with the cholorophenyl ring (C1–C6), indicating that they are almost orthogonal.

The mean planes of the nitro and methylamine groups are almost co-planar with the pyran ring, with dihedral angles of 4.66 (20) and 3.87 (19) °, respectively. The mean plane of six membered carbocyclic ring (C8–C10/C11-C13) makes a dihedral angle of 86.50 (14) ° with the chlorophenyl ring, which shows that they too are almost perpendicular to each other.

The six membered carbocyclic ring (C8-C10/C11-C13) of the chromene moiety adopts an envelope conformation on C11 atom which deviates by 0.302 (4) Å out of the mean plane formed by the remaining ring atoms. The amine group nitrogen atom N2 deviates by -0.2382 (25) Å from the pyran ring. The bromine atom Br1 deviates from the phenyl ring (C1–C6) by 0.0953 (4) Å. The title compound exhibits structural similarities with a related structure (Sun et al., 2012).

In the crystal, molecules are linked via C—H···O hydrogen bonds, which generate C(8) chains running parallel to the b axis (Bernstein et al.,1995); see Table 1 and Fig. 2. The crystal structure is further stabilized by C-H···π interactions (Table 1).

Experimental

A solution of the 4-bromobenzaldehyde (0.18 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (1.0 mmol), NMSM (0.15 g, 1.0 mmol) and piperidine (0.2 equiv) in EtOH (2 ml) was stirred for 3.5 hrs. After the reaction was complete, as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

The H atoms were localed from difference electron density maps and their distances were geometrically constrained. The amine group H atoms were constrained: N—H = 0.90 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were treated as riding atoms: C—H = 0.93, 0.97, 0.96 and 0.98 Å for CH(aromatic), methylene, methine and methyl H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. The rotation angles for the methyl groups were optimized by least squares. The bond distances of the disordered components of atom C11 were restrained using standard similarity restraint SADI [SHELXL97, Sheldrick, 2008] with s.u. of 0.01 Å. The atomic displacement parameters of the major and minor components were made equal using the constraint EADP.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level. The intramolecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c-axis, showing C2—H2···O4i hydrogen bonds resulting in the formation of C(8) chains running parallel to the b axis [hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity; symmetry code: (i) -x+3/2, y+1/2, -z+1/2].

Crystal data

C16H15BrN2O4 F(000) = 768
Mr = 379.18 Dx = 1.575 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2053 reflections
a = 8.1114 (9) Å θ = 2.2–26.0°
b = 10.8530 (13) Å µ = 2.59 mm1
c = 18.222 (2) Å T = 296 K
β = 94.399 (6)° Block, colourless
V = 1599.4 (3) Å3 0.30 × 0.25 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3130 independent reflections
Radiation source: fine-focus sealed tube 2053 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
ω and φ scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.464, Tmax = 0.523 k = −12→13
12198 measured reflections l = −19→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3202P] where P = (Fo2 + 2Fc2)/3
3130 reflections (Δ/σ)max = 0.002
218 parameters Δρmax = 0.41 e Å3
4 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C5 0.6240 (3) 0.6938 (2) 0.54373 (14) 0.0310 (6)
H5 0.5953 0.7167 0.4952 0.037*
C4 0.5278 (3) 0.6093 (3) 0.57717 (15) 0.0359 (7)
H4 0.4339 0.5763 0.5520 0.043*
C3 0.5733 (4) 0.5744 (3) 0.64890 (16) 0.0394 (7)
C2 0.7093 (3) 0.6247 (3) 0.68770 (15) 0.0386 (7)
H2 0.7379 0.6011 0.7361 0.046*
C1 0.8019 (3) 0.7104 (3) 0.65351 (14) 0.0359 (7)
H1 0.8930 0.7458 0.6796 0.043*
C6 0.7628 (3) 0.7455 (2) 0.58089 (13) 0.0279 (6)
C7 0.8703 (3) 0.8371 (2) 0.54267 (14) 0.0297 (6)
H7 0.9625 0.8614 0.5776 0.036*
C8 0.9402 (3) 0.7776 (2) 0.47729 (14) 0.0305 (6)
C9 1.0663 (3) 0.6799 (3) 0.49073 (17) 0.0384 (7)
C10 1.1286 (4) 0.6155 (3) 0.42605 (18) 0.0543 (9)
H10A 1.2327 0.6526 0.4151 0.065* 0.791 (7)
H10B 1.1504 0.5300 0.4391 0.065* 0.791 (7)
H10C 1.0740 0.5360 0.4218 0.065* 0.208 (7)
H10D 1.2456 0.5997 0.4374 0.065* 0.208 (7)
C11 1.0137 (6) 0.6194 (4) 0.3590 (2) 0.0529 (13) 0.791 (7)
H11A 0.9204 0.5658 0.3657 0.063* 0.791 (7)
H11B 1.0699 0.5882 0.3177 0.063* 0.791 (7)
C11' 1.1058 (18) 0.6734 (16) 0.3518 (6) 0.0529 (13) 0.208 (7)
H11C 1.1024 0.6091 0.3147 0.063* 0.208 (7)
H11D 1.2005 0.7254 0.3445 0.063* 0.208 (7)
C12 0.9494 (4) 0.7503 (3) 0.34074 (15) 0.0441 (8)
H12A 1.0366 0.7993 0.3216 0.053* 0.791 (7)
H12B 0.8578 0.7463 0.3034 0.053* 0.791 (7)
H12C 0.9658 0.8145 0.3050 0.053* 0.208 (7)
H12D 0.8621 0.6967 0.3201 0.053* 0.208 (7)
C13 0.8943 (3) 0.8086 (2) 0.40842 (15) 0.0331 (6)
C14 0.7371 (3) 0.9798 (2) 0.44461 (15) 0.0314 (6)
C15 0.7778 (3) 0.9516 (2) 0.51749 (14) 0.0296 (6)
C16 0.6219 (5) 1.1042 (4) 0.33983 (17) 0.0643 (10)
H16A 0.7247 1.1215 0.3191 0.096*
H16B 0.5510 1.1749 0.3342 0.096*
H16C 0.5694 1.0351 0.3149 0.096*
N1 0.7303 (3) 1.0296 (2) 0.57208 (14) 0.0391 (6)
N2 0.6532 (3) 1.0757 (2) 0.41753 (13) 0.0413 (6)
O1 0.7851 (2) 0.90458 (17) 0.39070 (10) 0.0401 (5)
O2 1.1199 (2) 0.6558 (2) 0.55357 (12) 0.0550 (6)
O3 0.6431 (3) 1.12423 (18) 0.55655 (11) 0.0497 (6)
O4 0.7744 (3) 1.0045 (2) 0.63710 (12) 0.0555 (6)
Br1 0.44896 (5) 0.45158 (4) 0.69353 (2) 0.0806 (2)
H2A 0.616 (4) 1.124 (2) 0.4528 (13) 0.058 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C5 0.0327 (15) 0.0365 (16) 0.0231 (14) 0.0076 (13) −0.0023 (11) 0.0015 (12)
C4 0.0264 (15) 0.0419 (17) 0.0391 (18) 0.0027 (13) −0.0004 (12) −0.0038 (14)
C3 0.0394 (17) 0.0393 (17) 0.0411 (18) 0.0045 (14) 0.0135 (14) 0.0076 (14)
C2 0.0438 (18) 0.0467 (18) 0.0254 (15) 0.0066 (15) 0.0031 (13) 0.0056 (13)
C1 0.0355 (16) 0.0449 (17) 0.0265 (16) 0.0022 (14) −0.0034 (12) −0.0029 (13)
C6 0.0324 (15) 0.0278 (14) 0.0235 (14) 0.0050 (12) 0.0017 (11) −0.0006 (11)
C7 0.0284 (14) 0.0322 (15) 0.0276 (15) −0.0010 (12) −0.0036 (11) −0.0012 (12)
C8 0.0284 (14) 0.0301 (15) 0.0335 (16) 0.0001 (12) 0.0044 (12) 0.0002 (12)
C9 0.0311 (15) 0.0361 (17) 0.049 (2) 0.0002 (13) 0.0076 (14) 0.0054 (15)
C10 0.058 (2) 0.046 (2) 0.060 (2) 0.0154 (17) 0.0153 (18) −0.0003 (17)
C11 0.051 (3) 0.053 (3) 0.054 (2) 0.014 (2) 0.004 (2) −0.015 (2)
C11' 0.051 (3) 0.053 (3) 0.054 (2) 0.014 (2) 0.004 (2) −0.015 (2)
C12 0.0520 (19) 0.0428 (18) 0.0384 (18) 0.0071 (15) 0.0094 (14) −0.0051 (14)
C13 0.0334 (15) 0.0300 (15) 0.0363 (17) 0.0019 (13) 0.0063 (12) −0.0008 (13)
C14 0.0324 (15) 0.0282 (15) 0.0344 (17) 0.0013 (13) 0.0069 (12) 0.0002 (13)
C15 0.0364 (15) 0.0252 (14) 0.0275 (16) −0.0003 (12) 0.0042 (12) −0.0021 (12)
C16 0.082 (3) 0.073 (2) 0.038 (2) 0.035 (2) 0.0092 (17) 0.0189 (18)
N1 0.0488 (15) 0.0331 (15) 0.0356 (16) −0.0028 (12) 0.0041 (12) −0.0048 (12)
N2 0.0505 (15) 0.0375 (15) 0.0365 (15) 0.0126 (12) 0.0082 (12) 0.0085 (12)
O1 0.0508 (12) 0.0419 (11) 0.0278 (10) 0.0177 (10) 0.0041 (9) 0.0000 (9)
O2 0.0472 (13) 0.0663 (15) 0.0507 (15) 0.0186 (11) −0.0005 (11) 0.0140 (12)
O3 0.0660 (15) 0.0338 (12) 0.0497 (13) 0.0142 (11) 0.0072 (11) −0.0046 (10)
O4 0.0869 (17) 0.0503 (13) 0.0282 (13) 0.0066 (12) −0.0027 (11) −0.0077 (10)
Br1 0.0731 (3) 0.0910 (4) 0.0789 (3) −0.0277 (2) 0.0142 (2) 0.0337 (2)

Geometric parameters (Å, º)

C5—C4 1.376 (4) C10—H10D 0.9700
C5—C6 1.387 (3) C11—C12 1.541 (5)
C5—H5 0.9300 C11—H11A 0.9700
C4—C3 1.384 (4) C11—H11B 0.9700
C4—H4 0.9300 C11'—C12 1.519 (9)
C3—C2 1.376 (4) C11'—H11C 0.9700
C3—Br1 1.893 (3) C11'—H11D 0.9700
C2—C1 1.375 (4) C12—C13 1.485 (4)
C2—H2 0.9300 C12—H12A 0.9700
C1—C6 1.390 (3) C12—H12B 0.9700
C1—H1 0.9300 C12—H12C 0.9700
C6—C7 1.526 (4) C12—H12D 0.9700
C7—C8 1.504 (4) C13—O1 1.389 (3)
C7—C15 1.504 (4) C14—N2 1.318 (3)
C7—H7 0.9800 C14—O1 1.357 (3)
C8—C13 1.325 (4) C14—C15 1.378 (4)
C8—C9 1.480 (4) C15—N1 1.383 (3)
C9—O2 1.222 (3) C16—N2 1.452 (4)
C9—C10 1.492 (4) C16—H16A 0.9600
C10—C11 1.480 (5) C16—H16B 0.9600
C10—C11' 1.491 (9) C16—H16C 0.9600
C10—H10A 0.9700 N1—O4 1.241 (3)
C10—H10B 0.9700 N1—O3 1.267 (3)
C10—H10C 0.9700 N2—H2A 0.897 (10)
C4—C5—C6 121.3 (2) H10C—C11—H11A 75.8
C4—C5—H5 119.3 C10—C11—H11B 109.0
C6—C5—H5 119.3 C12—C11—H11B 109.0
C5—C4—C3 118.8 (3) H10C—C11—H11B 103.5
C5—C4—H4 120.6 H11A—C11—H11B 107.8
C3—C4—H4 120.6 C10—C11'—C12 113.3 (7)
C2—C3—C4 121.5 (3) C10—C11'—H11C 108.9
C2—C3—Br1 119.4 (2) C12—C11'—H11C 108.9
C4—C3—Br1 119.1 (2) C10—C11'—H11D 108.9
C3—C2—C1 118.7 (3) C12—C11'—H11D 108.9
C3—C2—H2 120.7 H11C—C11'—H11D 107.7
C1—C2—H2 120.7 C13—C12—C11' 115.2 (5)
C2—C1—C6 121.6 (3) C13—C12—C11 109.4 (3)
C2—C1—H1 119.2 C13—C12—H12A 109.8
C6—C1—H1 119.2 C11'—C12—H12A 74.0
C5—C6—C1 118.2 (2) C11—C12—H12A 109.8
C5—C6—C7 120.8 (2) C13—C12—H12B 109.8
C1—C6—C7 121.1 (2) C11'—C12—H12B 131.0
C8—C7—C15 108.8 (2) C11—C12—H12B 109.8
C8—C7—C6 110.2 (2) H12A—C12—H12B 108.2
C15—C7—C6 112.9 (2) C13—C12—H12C 108.5
C8—C7—H7 108.3 C11'—C12—H12C 109.1
C15—C7—H7 108.3 C11—C12—H12C 138.2
C6—C7—H7 108.3 H12B—C12—H12C 72.4
C13—C8—C9 118.7 (2) C13—C12—H12D 108.7
C13—C8—C7 123.0 (2) C11'—C12—H12D 107.4
C9—C8—C7 118.3 (2) C11—C12—H12D 75.9
O2—C9—C8 120.0 (3) H12A—C12—H12D 136.0
O2—C9—C10 121.5 (3) H12C—C12—H12D 107.6
C8—C9—C10 118.5 (3) C8—C13—O1 122.6 (2)
C11—C10—C9 114.1 (3) C8—C13—C12 126.7 (3)
C11'—C10—C9 119.6 (6) O1—C13—C12 110.7 (2)
C11—C10—H10A 108.7 N2—C14—O1 111.9 (2)
C11'—C10—H10A 71.8 N2—C14—C15 128.0 (2)
C9—C10—H10A 108.7 O1—C14—C15 120.2 (2)
C11—C10—H10B 108.7 C14—C15—N1 119.8 (2)
C11'—C10—H10B 129.3 C14—C15—C7 123.7 (2)
C9—C10—H10B 108.7 N1—C15—C7 116.5 (2)
H10A—C10—H10B 107.6 N2—C16—H16A 109.5
C11—C10—H10C 72.8 N2—C16—H16B 109.5
C11'—C10—H10C 106.1 H16A—C16—H16B 109.5
C9—C10—H10C 107.4 N2—C16—H16C 109.5
H10A—C10—H10C 138.8 H16A—C16—H16C 109.5
C11—C10—H10D 136.4 H16B—C16—H16C 109.5
C11'—C10—H10D 108.6 O4—N1—O3 120.4 (2)
C9—C10—H10D 107.5 O4—N1—C15 118.4 (2)
H10B—C10—H10D 67.9 O3—N1—C15 121.2 (2)
H10C—C10—H10D 107.1 C14—N2—C16 125.4 (3)
C10—C11—C12 112.7 (3) C14—N2—H2A 112 (2)
C12—C11—H10C 143.2 C16—N2—H2A 122 (2)
C10—C11—H11A 109.0 C14—O1—C13 119.7 (2)
C12—C11—H11A 109.0
C6—C5—C4—C3 −1.1 (4) C10—C11'—C12—C13 30.1 (16)
C5—C4—C3—C2 1.8 (4) C10—C11'—C12—C11 −58.9 (8)
C5—C4—C3—Br1 −176.51 (19) C10—C11—C12—C13 −47.2 (4)
C4—C3—C2—C1 −0.7 (4) C10—C11—C12—C11' 59.3 (8)
Br1—C3—C2—C1 177.6 (2) C9—C8—C13—O1 −175.7 (2)
C3—C2—C1—C6 −1.0 (4) C7—C8—C13—O1 4.3 (4)
C4—C5—C6—C1 −0.6 (4) C9—C8—C13—C12 3.7 (4)
C4—C5—C6—C7 178.8 (2) C7—C8—C13—C12 −176.3 (3)
C2—C1—C6—C5 1.7 (4) C11'—C12—C13—C8 −17.8 (9)
C2—C1—C6—C7 −177.7 (2) C11—C12—C13—C8 21.6 (4)
C5—C6—C7—C8 −60.6 (3) C11'—C12—C13—O1 161.7 (8)
C1—C6—C7—C8 118.7 (3) C11—C12—C13—O1 −158.9 (3)
C5—C6—C7—C15 61.2 (3) N2—C14—C15—N1 −0.6 (4)
C1—C6—C7—C15 −119.4 (3) O1—C14—C15—N1 179.2 (2)
C15—C7—C8—C13 −13.3 (3) N2—C14—C15—C7 178.1 (3)
C6—C7—C8—C13 110.9 (3) O1—C14—C15—C7 −2.1 (4)
C15—C7—C8—C9 166.7 (2) C8—C7—C15—C14 12.3 (3)
C6—C7—C8—C9 −69.1 (3) C6—C7—C15—C14 −110.3 (3)
C13—C8—C9—O2 174.6 (3) C8—C7—C15—N1 −168.9 (2)
C7—C8—C9—O2 −5.4 (4) C6—C7—C15—N1 68.4 (3)
C13—C8—C9—C10 −3.6 (4) C14—C15—N1—O4 −177.1 (2)
C7—C8—C9—C10 176.4 (2) C7—C15—N1—O4 4.1 (4)
O2—C9—C10—C11 158.4 (3) C14—C15—N1—O3 3.3 (4)
C8—C9—C10—C11 −23.5 (4) C7—C15—N1—O3 −175.6 (2)
O2—C9—C10—C11' −159.3 (9) O1—C14—N2—C16 −3.4 (4)
C8—C9—C10—C11' 18.8 (9) C15—C14—N2—C16 176.4 (3)
C11'—C10—C11—C12 −58.5 (7) N2—C14—O1—C13 170.9 (2)
C9—C10—C11—C12 49.3 (5) C15—C14—O1—C13 −8.9 (4)
C11—C10—C11'—C12 60.3 (9) C8—C13—O1—C14 8.0 (4)
C9—C10—C11'—C12 −31.7 (17) C12—C13—O1—C14 −171.5 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the pyran ring (C7/C8/C13/O1/C14/C15).

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.90 (2) 1.89 (2) 2.595 (3) 134 (2)
C2—H2···O4i 0.93 2.55 3.442 (4) 162
C10—H10B···Cg1ii 0.97 2.77 3.527 (3) 136
C16—H16B···Cg1iii 0.96 2.73 3.606 (4) 153

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2597).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
  6. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  7. Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Sun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813012774/su2597sup1.cif

e-69-0o931-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813012774/su2597Isup2.hkl

e-69-0o931-Isup2.hkl (150.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813012774/su2597Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES