Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 25;69(Pt 6):o957–o958. doi: 10.1107/S1600536813013949

l-Histidinium dipicrate dihydrate

M Sethuram a, M V Rajasekharan b, M Dhandapani a, G Amirthaganesan a, M NizamMohideen c,*
PMCID: PMC3685097  PMID: 23795116

Abstract

In the title mol­ecular salt, C6H11N3O2 2+·2C6H2N3O7 ·2H2O, the histidine mol­ecule exists as a histidinium dication, being protonated at the N atom of the imidazole ring. The charges are balanced by two picrate anions and the compound crystallizes as a dihydrate. In the crystal, the components are linked via N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming a three-dimensional supermolecular structure.

Related literature  

For the role of hydrogen bonding in the construction of supra­molecular structures, see: Braga et al. (2004); Harrowfield et al. (1995). For picrates of biologically important mol­ecules, see: Harrison et al. (2007); Swamy et al. (2007); Bibal et al. (2003); Olsher et al. (1996). For bond angles in related structures, see: Yang et al. (2001).graphic file with name e-69-0o957-scheme1.jpg

Experimental  

Crystal data  

  • C6H11N3O2 2+·2C6H2N3O7 ·2H2O

  • M r = 649.42

  • Monoclinic, Inline graphic

  • a = 6.6060 (4) Å

  • b = 25.7003 (13) Å

  • c = 7.9627 (5) Å

  • β = 107.532 (7)°

  • V = 1289.08 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.970, T max = 0.985

  • 5817 measured reflections

  • 2982 independent reflections

  • 2560 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.088

  • S = 1.09

  • 2982 reflections

  • 439 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013949/su2602sup1.cif

e-69-0o957-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013949/su2602Isup2.hkl

e-69-0o957-Isup2.hkl (143.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013949/su2602Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O10 0.89 2.19 2.909 (3) 138
N1—H1A⋯O12 0.89 2.11 2.841 (4) 139
N1—H1B⋯O18W 0.89 1.85 2.700 (5) 158
N1—H1C⋯O15i 0.89 2.16 3.007 (4) 159
N2—H2B⋯O10 0.91 (5) 1.86 (5) 2.709 (4) 154 (4)
N2—H2B⋯O16 0.91 (5) 2.49 (4) 3.125 (4) 128 (3)
N3—H3⋯O9ii 0.86 2.56 2.992 (5) 112
N3—H3⋯O14ii 0.86 2.25 3.077 (4) 160
O2—H2⋯O3iii 0.82 1.86 2.657 (3) 165
O17W—H17A⋯O5iv 0.84 (2) 2.27 (3) 3.082 (4) 162 (9)
O17W—H17B⋯O3 0.84 (2) 2.14 (8) 2.864 (4) 144 (12)
O18W—H18A⋯O17W v 0.83 (2) 1.83 (2) 2.664 (5) 176 (5)
O18W—H18B⋯O7 0.83 (2) 2.32 (4) 3.005 (5) 140 (6)
C3—H3B⋯O10 0.97 2.59 3.210 (4) 122
C9—H9⋯O8vi 0.93 2.40 3.177 (4) 141
C17—H17⋯O11iv 0.93 2.36 3.177 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

MS thanks the UGC Networking Centre, School of Chemistry, University of Hyderabad, India, for the award of a Visiting Research Fellowship to use the facilities at the School, which the authors also thank for access to the X-ray diffraction equipment.

supplementary crystallographic information

Comment

Intermolecular and inter-ionic hydrogen bonding interactions, which are not only the strongest of the noncovalent interactions but also highly directional, play an important role in constructing supramolecular structures (Braga et al., 2004). Picrate is generally used as an accompanying ion in many systems involving extraction and transport of metal ions to improve the extractability (Bibal et al., 2003). Picrate interacts as a monodentate, bidentate and tridentate ligand (Olsher et al., 1996). Furthermore, picrate is a penta-dentate ligand when it coordinates with cation by chelating pairs of oxygen atoms from p-nitro groups of adjacent picrates, and with successive cations linking the array into a two or three-dimensional network (Harrowfield et al., 1995) and picrates of biologically important molecules (Harrison et al., 2007; Swamy et al., 2007). We have prepared a new picrate of L-Histidinium hydrate and its crystal structure is reported herein.

The asymmetric unit of the title compound, Fig. 1, contains an L-histidinium cation, two picrate anions and two water molecules. The histidine molecule exists as an histidinium ion due to the protonation at the N atom of the imidazole ring. The charges are equilibrated by two picrate anions and crystallizes as a dihydrate. The imidazole ring (N2/N3/C4/C5/C6) makes a dihedral angle of 5.0 (2) and 4.9 (2)° with the benzene rings (C7—C12 and C13—C18), respectively, of the picrate anions.

The picrate anions adopt the keto form with C7—O3 and C13—O10 bond distance of 1.261 (4) and 1.249 (4) Å, C7—C8, C7—C12, C13—C14 and C13—C18 bond distance of 1.445 (4), 1.444 (4), 1.451 (4) and 1.450 (4) Å, respectively, which is longer than the other C—C bond lengths (between 1.374 (5) to 1.460 (4) Å) in the benzene ring. The bond angles C12—C7—C8 and C14—C13—C18 is 111.3 (3) and 110.6 (3)°, respectively, which is the case in some picrate complexes, while the corresponding bond angle of picric acid is 116.4 (5)° [Yang et al., 2001]. In the picrate anion the depronated phenolate oxygen atom deviates slightly from the plane of the benzene ring (torsion angle O3-C7-C8-C9 = -175.4 (3) ° and O10-C13-C14-C15 = 178.2 (3)°). The twist angles between the benzene rings (C7—C12 and C13—C18) and the ortho nitro groups (N4, N6, N7 and N9) are 41.5 (2), 32.4 (2), 32.2 (2) and 34.8 (2), respectively. The para-positioned nitro groups are twisted by 3.4 (2)° (N5) and 5.8 (2)° (N8), and are most likely influenced by a weak hydrogen bond interaction (O18—H18B···O7). The picrate ions are stacked head-to-tail, presumably as a result of charge-transfer interactions.

In the crystal the cation, the picrate anions and the water molecules of crystallization are involved in N—H···O and O—H···O hydrogen bonds and week C—H···O interactions, to form a three-dimensional supramolecular network (Table 1 and Fig. 2).

Experimental

1:2 stoichiometric proportions of analar grades L-histidine and picric acid (E-Merck) were dissolved in a triply distilled water and ethanol mixture and the two solutions were thoroughly mixed together using mechanical stirrer for about three hours. The clear yellow solution obtained was filtered off to get the crude material. The material was re-dissolved in a water-ethanol solvent mixture and kept aside without any mechanical movement for crystal growth in a dust free environment. Bright yellowish crystals that formed in 5 days were collected carefully from the mother liquor. Several re-crystallizations were done to get ultra pure crystals. The yield in the reaction was ca. 60%. Analysis calc. for C18H18N9O18 : C: 33.34, H: 2.79, N: 19.44 %; Found: C: 33.21, H: 3.74, N: 19.60%.

Refinement

The water molecule H-atoms, the methine (CH) H atom, and the CH and one NH H atom of the imidazole ring, were located in a difference Fourier map and freely refined. The OH, the NH3, one NH H atom of the imidazole ring, and the CH~2~ H atoms were positioned geometrically and refined using a riding model: O-H = 0.82 Å, N—H = 0.89 Å (NH3), N—H = 0.86 Å, C—H = 0.97 Å for CH2 H atoms, with Uiso(H) = 1.5Ueq(O,N) for the OH and NH3 H atoms and = 1.2Ueq(N,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial view along the a axisof the crystal packing of the title compound. Dashed lines indicate N—H···O and O—H···O hydrogen bonds and weak C—H···O interactions (see Table 1 for details).

Crystal data

C6H11N3O22+·2C6H2N3O7·2H2O F(000) = 668
Mr = 649.42 Dx = 1.673 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5817 reflections
a = 6.6060 (4) Å θ = 2.4–31.1°
b = 25.7003 (13) Å µ = 0.15 mm1
c = 7.9627 (5) Å T = 293 K
β = 107.532 (7)° Square, yellow
V = 1289.08 (13) Å3 0.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 2982 independent reflections
Radiation source: fine-focus sealed tube 2560 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω and φ scans θmax = 28.9°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −8→8
Tmin = 0.970, Tmax = 0.985 k = −26→34
5817 measured reflections l = −10→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2411P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2982 reflections Δρmax = 0.21 e Å3
439 parameters Δρmin = −0.18 e Å3
7 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0095 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1170 (5) −0.00275 (12) 1.2736 (5) 0.0774 (11)
O2 0.8469 (5) −0.04330 (11) 1.3342 (4) 0.0566 (8)
H2 0.9346 −0.0664 1.3719 0.085*
O3 0.9237 (4) 0.37442 (9) 0.5194 (3) 0.0366 (6)
O4 1.1711 (5) 0.33930 (12) 1.0182 (3) 0.0618 (9)
O5 0.9113 (6) 0.38681 (13) 0.8677 (4) 0.0659 (9)
O6 1.0105 (5) 0.15561 (11) 0.8787 (3) 0.0527 (7)
O7 0.9511 (5) 0.13208 (10) 0.6075 (3) 0.0507 (7)
O8 0.9119 (4) 0.26246 (10) 0.1693 (3) 0.0456 (6)
O9 0.7415 (5) 0.33288 (10) 0.1914 (3) 0.0489 (7)
O10 0.5060 (4) 0.11319 (9) 0.8159 (3) 0.0379 (6)
O11 0.4555 (4) 0.23048 (10) 1.1305 (3) 0.0443 (6)
O12 0.6326 (5) 0.16004 (10) 1.1346 (3) 0.0505 (7)
O13 0.4413 (5) 0.35254 (9) 0.6731 (4) 0.0529 (7)
O14 0.3963 (5) 0.32377 (10) 0.4098 (3) 0.0522 (7)
O15 0.2242 (5) 0.14022 (12) 0.3056 (3) 0.0565 (8)
O16 0.4623 (6) 0.09005 (11) 0.4743 (4) 0.0668 (9)
N1 0.8717 (5) 0.07237 (10) 1.0875 (4) 0.0354 (6)
H1A 0.7843 0.0987 1.0431 0.053*
H1B 0.8912 0.0535 1.0000 0.053*
H1C 0.9959 0.0848 1.1535 0.053*
N2 0.4952 (5) 0.00857 (12) 0.7727 (4) 0.0380 (7)
N3 0.4987 (6) −0.07402 (13) 0.7471 (5) 0.0590 (10)
H3 0.4956 −0.1045 0.7020 0.071*
N4 1.0229 (5) 0.34810 (12) 0.8865 (4) 0.0388 (7)
N5 0.9722 (4) 0.16635 (11) 0.7214 (4) 0.0353 (7)
N6 0.8457 (5) 0.29442 (11) 0.2552 (3) 0.0322 (6)
N7 0.5317 (4) 0.19734 (11) 1.0568 (3) 0.0312 (6)
N8 0.4235 (4) 0.31696 (11) 0.5679 (4) 0.0315 (6)
N9 0.3649 (5) 0.13122 (11) 0.4434 (3) 0.0364 (7)
C1 0.9350 (6) −0.00520 (14) 1.2718 (5) 0.0423 (9)
C2 0.7771 (6) 0.03902 (13) 1.1981 (4) 0.0344 (7)
C3 0.5503 (5) 0.02145 (14) 1.0983 (4) 0.0365 (8)
H3A 0.4943 0.0022 1.1793 0.044*
H3B 0.4629 0.0522 1.0624 0.044*
C4 0.5280 (5) −0.01146 (13) 0.9395 (4) 0.0331 (7)
C5 0.4757 (6) −0.03046 (16) 0.6596 (5) 0.0493 (10)
C6 0.5283 (7) −0.06396 (16) 0.9212 (5) 0.0504 (10)
C7 0.9258 (5) 0.32737 (12) 0.5650 (4) 0.0256 (6)
C8 0.9775 (5) 0.30948 (13) 0.7450 (4) 0.0283 (7)
C9 0.9939 (5) 0.25863 (13) 0.7963 (4) 0.0275 (7)
H9 1.0308 0.2500 0.9151 0.033*
C10 0.9549 (5) 0.22013 (12) 0.6693 (4) 0.0265 (6)
C11 0.9070 (4) 0.23282 (12) 0.4924 (4) 0.0259 (6)
H11 0.8856 0.2068 0.4077 0.031*
C12 0.8915 (5) 0.28421 (11) 0.4435 (4) 0.0235 (6)
C13 0.4825 (5) 0.15872 (12) 0.7585 (4) 0.0260 (6)
C14 0.5012 (5) 0.20440 (12) 0.8692 (4) 0.0232 (6)
C15 0.4816 (5) 0.25485 (12) 0.8099 (4) 0.0246 (6)
H15 0.4977 0.2825 0.8884 0.030*
C16 0.4375 (5) 0.26384 (12) 0.6310 (4) 0.0237 (6)
C17 0.3974 (4) 0.22294 (12) 0.5116 (4) 0.0247 (6)
H17 0.3562 0.2293 0.3910 0.030*
C18 0.4195 (5) 0.17329 (12) 0.5740 (4) 0.0249 (6)
O17W 1.0107 (7) 0.43238 (13) 0.2418 (5) 0.0724 (10)
O18W 1.0051 (8) 0.03423 (14) 0.8230 (5) 0.0779 (11)
H17A 1.006 (14) 0.415 (3) 0.150 (7) 0.18 (4)*
H17B 1.04 (2) 0.411 (3) 0.325 (9) 0.31 (7)*
H18A 1.001 (9) 0.0022 (8) 0.808 (7) 0.086 (19)*
H18B 0.977 (15) 0.049 (2) 0.726 (5) 0.19 (4)*
H2A 0.763 (6) 0.0623 (16) 1.296 (5) 0.039 (10)*
H6 0.539 (7) −0.0916 (19) 0.999 (6) 0.064 (13)*
H5 0.455 (7) −0.029 (2) 0.536 (6) 0.068 (13)*
H2B 0.479 (7) 0.0432 (19) 0.751 (5) 0.053 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0441 (17) 0.047 (2) 0.123 (3) 0.0016 (14) −0.0029 (17) 0.0338 (19)
O2 0.0723 (19) 0.0389 (16) 0.0567 (16) 0.0113 (15) 0.0166 (14) 0.0245 (13)
O3 0.0544 (15) 0.0211 (12) 0.0300 (11) −0.0025 (11) 0.0064 (10) −0.0010 (9)
O4 0.083 (2) 0.0564 (19) 0.0295 (13) −0.0121 (17) −0.0084 (13) −0.0061 (13)
O5 0.096 (2) 0.0489 (19) 0.0517 (16) 0.0160 (18) 0.0213 (15) −0.0173 (14)
O6 0.0750 (19) 0.0426 (16) 0.0386 (14) −0.0024 (14) 0.0143 (13) 0.0187 (12)
O7 0.0717 (19) 0.0268 (14) 0.0524 (16) −0.0034 (14) 0.0168 (13) 0.0001 (13)
O8 0.0684 (17) 0.0436 (16) 0.0298 (12) −0.0007 (14) 0.0225 (12) −0.0067 (11)
O9 0.0775 (19) 0.0295 (13) 0.0292 (12) 0.0062 (13) 0.0000 (12) 0.0058 (10)
O10 0.0591 (16) 0.0204 (12) 0.0299 (12) 0.0018 (11) 0.0070 (11) 0.0016 (9)
O11 0.0660 (16) 0.0427 (15) 0.0298 (12) 0.0072 (13) 0.0229 (12) −0.0033 (11)
O12 0.080 (2) 0.0350 (14) 0.0269 (12) 0.0154 (14) 0.0007 (12) 0.0059 (11)
O13 0.079 (2) 0.0174 (13) 0.0575 (16) 0.0002 (13) 0.0135 (14) −0.0002 (12)
O14 0.081 (2) 0.0376 (15) 0.0368 (13) 0.0005 (15) 0.0155 (13) 0.0172 (12)
O15 0.0706 (19) 0.0514 (18) 0.0320 (13) −0.0160 (15) −0.0078 (12) −0.0063 (12)
O16 0.112 (3) 0.0364 (17) 0.0446 (16) 0.0147 (18) 0.0118 (17) −0.0133 (13)
N1 0.0395 (15) 0.0194 (14) 0.0404 (16) −0.0002 (12) 0.0017 (12) 0.0029 (11)
N2 0.0445 (17) 0.0244 (15) 0.0380 (16) −0.0015 (14) 0.0019 (13) −0.0004 (13)
N3 0.082 (3) 0.0247 (17) 0.058 (2) −0.0058 (18) 0.0021 (18) −0.0120 (15)
N4 0.0573 (19) 0.0330 (18) 0.0281 (14) −0.0092 (15) 0.0158 (13) −0.0041 (12)
N5 0.0356 (15) 0.0281 (16) 0.0416 (16) −0.0027 (13) 0.0110 (12) 0.0070 (13)
N6 0.0444 (16) 0.0279 (15) 0.0219 (13) −0.0078 (13) 0.0066 (11) −0.0031 (11)
N7 0.0428 (16) 0.0261 (15) 0.0220 (13) −0.0012 (13) 0.0056 (11) −0.0016 (11)
N8 0.0286 (14) 0.0255 (15) 0.0399 (15) −0.0017 (12) 0.0096 (11) 0.0060 (12)
N9 0.0547 (18) 0.0253 (15) 0.0290 (14) −0.0073 (14) 0.0122 (13) −0.0055 (12)
C1 0.048 (2) 0.0270 (19) 0.0382 (19) −0.0013 (17) −0.0072 (16) 0.0034 (15)
C2 0.0470 (19) 0.0246 (17) 0.0274 (15) 0.0004 (15) 0.0048 (14) 0.0022 (13)
C3 0.0412 (18) 0.0329 (18) 0.0341 (17) 0.0030 (16) 0.0097 (14) 0.0045 (14)
C4 0.0338 (16) 0.0230 (16) 0.0377 (17) −0.0032 (14) 0.0037 (13) 0.0027 (14)
C5 0.058 (2) 0.038 (2) 0.043 (2) −0.0062 (19) 0.0018 (18) −0.0087 (18)
C6 0.064 (3) 0.031 (2) 0.045 (2) −0.0083 (19) 0.0001 (19) 0.0019 (18)
C7 0.0269 (15) 0.0258 (16) 0.0221 (14) −0.0025 (13) 0.0046 (11) −0.0039 (12)
C8 0.0311 (16) 0.0290 (17) 0.0248 (15) −0.0051 (14) 0.0081 (12) −0.0064 (13)
C9 0.0295 (15) 0.0314 (18) 0.0224 (14) −0.0003 (14) 0.0090 (12) 0.0034 (13)
C10 0.0251 (14) 0.0234 (16) 0.0313 (15) −0.0005 (13) 0.0088 (11) 0.0038 (12)
C11 0.0254 (14) 0.0262 (16) 0.0263 (14) −0.0033 (13) 0.0082 (11) −0.0041 (12)
C12 0.0288 (15) 0.0187 (14) 0.0213 (14) −0.0009 (12) 0.0051 (11) −0.0007 (11)
C13 0.0275 (15) 0.0248 (16) 0.0251 (15) 0.0014 (13) 0.0070 (12) −0.0005 (13)
C14 0.0267 (14) 0.0246 (16) 0.0176 (14) 0.0022 (13) 0.0057 (11) 0.0006 (11)
C15 0.0256 (14) 0.0233 (15) 0.0239 (14) 0.0018 (13) 0.0057 (11) −0.0023 (12)
C16 0.0229 (14) 0.0202 (15) 0.0276 (15) 0.0015 (12) 0.0072 (11) 0.0048 (12)
C17 0.0254 (14) 0.0274 (17) 0.0215 (14) −0.0005 (13) 0.0074 (11) 0.0027 (12)
C18 0.0270 (15) 0.0252 (16) 0.0215 (15) −0.0004 (13) 0.0058 (12) −0.0030 (11)
O17W 0.126 (3) 0.0397 (18) 0.0615 (19) −0.0171 (19) 0.043 (2) −0.0111 (15)
O18W 0.125 (3) 0.043 (2) 0.085 (3) 0.009 (2) 0.060 (2) 0.0001 (18)

Geometric parameters (Å, º)

O1—C1 1.199 (5) N8—C16 1.448 (4)
O2—C1 1.311 (5) N9—C18 1.468 (4)
O2—H2 0.8200 C1—C2 1.534 (5)
O3—C7 1.261 (4) C2—C3 1.537 (5)
O4—N4 1.220 (4) C2—H2A 1.01 (4)
O5—N4 1.220 (4) C3—C4 1.491 (5)
O6—N5 1.232 (4) C3—H3A 0.9700
O7—N5 1.242 (4) C3—H3B 0.9700
O8—N6 1.230 (4) C4—C6 1.357 (5)
O9—N6 1.224 (4) C5—H5 0.96 (5)
O10—C13 1.249 (4) C6—H6 0.93 (5)
O11—N7 1.225 (3) C7—C12 1.444 (4)
O12—N7 1.224 (4) C7—C8 1.445 (4)
O13—N8 1.222 (4) C8—C9 1.363 (5)
O14—N8 1.230 (4) C9—C10 1.383 (4)
O15—N9 1.228 (4) C9—H9 0.9300
O16—N9 1.224 (4) C10—C11 1.387 (4)
N1—C2 1.494 (4) C11—C12 1.372 (4)
N1—H1A 0.8900 C11—H11 0.9300
N1—H1B 0.8900 C13—C14 1.451 (4)
N1—H1C 0.8900 C13—C18 1.450 (4)
N2—C5 1.328 (5) C14—C15 1.373 (4)
N2—C4 1.380 (4) C15—C16 1.385 (4)
N2—H2B 0.91 (5) C15—H15 0.9300
N3—C5 1.303 (5) C16—C17 1.388 (4)
N3—C6 1.365 (5) C17—C18 1.361 (4)
N3—H3 0.8600 C17—H17 0.9300
N4—C8 1.463 (4) O17W—H17A 0.84 (2)
N5—C10 1.438 (4) O17W—H17B 0.84 (2)
N6—C12 1.461 (4) O18W—H18A 0.83 (2)
N7—C14 1.457 (4) O18W—H18B 0.83 (2)
C1—O2—H2 109.5 C6—C4—N2 105.8 (3)
C2—N1—H1A 109.5 C6—C4—C3 130.7 (3)
C2—N1—H1B 109.5 N2—C4—C3 123.5 (3)
H1A—N1—H1B 109.5 N3—C5—N2 108.3 (4)
C2—N1—H1C 109.5 N3—C5—H5 124 (3)
H1A—N1—H1C 109.5 N2—C5—H5 128 (3)
H1B—N1—H1C 109.5 C4—C6—N3 107.0 (4)
C5—N2—C4 109.0 (3) C4—C6—H6 134 (3)
C5—N2—H2B 129 (3) N3—C6—H6 119 (3)
C4—N2—H2B 121 (3) O3—C7—C12 123.9 (3)
C5—N3—C6 109.8 (3) O3—C7—C8 124.7 (3)
C5—N3—H3 125.1 C12—C7—C8 111.3 (3)
C6—N3—H3 125.1 C9—C8—C7 125.1 (3)
O5—N4—O4 123.7 (3) C9—C8—N4 116.1 (3)
O5—N4—C8 118.8 (3) C7—C8—N4 118.7 (3)
O4—N4—C8 117.5 (3) C8—C9—C10 119.1 (3)
O6—N5—O7 121.8 (3) C8—C9—H9 120.4
O7—N5—O7 0.0 (3) C10—C9—H9 120.4
O6—N5—C10 118.9 (3) C9—C10—C11 120.7 (3)
O7—N5—C10 119.3 (3) C9—C10—N5 119.7 (3)
O9—N6—O8 123.9 (3) C11—C10—N5 119.6 (3)
O9—N6—C12 119.2 (3) C12—C11—C10 119.3 (3)
O8—N6—C12 116.9 (3) C12—C11—H11 120.3
O12—N7—O11 122.8 (3) C10—C11—H11 120.3
O12—N7—C14 120.2 (3) C11—C12—C7 124.5 (3)
O11—N7—C14 117.0 (3) C11—C12—N6 116.0 (3)
O13—N8—O14 123.4 (3) C7—C12—N6 119.4 (3)
O13—N8—C16 119.0 (3) O10—C13—C14 123.9 (3)
O14—N8—C16 117.6 (3) O10—C13—C18 125.4 (3)
O16—N9—O15 123.6 (3) C14—C13—C18 110.6 (3)
O16—N9—C18 119.5 (3) C15—C14—C13 125.0 (2)
O15—N9—C18 116.9 (3) C15—C14—N7 116.1 (3)
O1—C1—O2 126.3 (4) C13—C14—N7 118.8 (3)
O1—C1—C2 121.9 (3) C14—C15—C16 118.7 (3)
O2—C1—C2 111.7 (3) C14—C15—H15 120.6
N1—C2—C1 107.1 (3) C16—C15—H15 120.6
N1—C2—C3 112.3 (3) C15—C16—C17 121.1 (3)
C1—C2—C3 115.1 (3) C15—C16—N8 119.1 (3)
N1—C2—H2A 105 (2) C17—C16—N8 119.8 (3)
C1—C2—H2A 111 (2) C18—C17—C16 118.8 (3)
C3—C2—H2A 106 (2) C18—C17—H17 120.6
C4—C3—C2 115.9 (3) C16—C17—H17 120.6
C4—C3—H3A 108.3 C17—C18—C13 125.4 (3)
C2—C3—H3A 108.3 C17—C18—N9 117.1 (2)
C4—C3—H3B 108.3 C13—C18—N9 117.5 (3)
C2—C3—H3B 108.3 H17A—O17W—H17B 106 (3)
H3A—C3—H3B 107.4 H18A—O18W—H18B 109 (3)
O1—C1—C2—N1 17.5 (5) C8—C7—C12—C11 −0.3 (4)
O2—C1—C2—N1 −164.4 (3) O3—C7—C12—N6 −1.7 (5)
O1—C1—C2—C3 143.1 (4) C8—C7—C12—N6 −177.6 (3)
O2—C1—C2—C3 −38.8 (4) O9—N6—C12—C11 148.0 (3)
N1—C2—C3—C4 62.2 (4) O8—N6—C12—C11 −30.3 (4)
C1—C2—C3—C4 −60.7 (4) O9—N6—C12—C7 −34.5 (4)
C5—N2—C4—C6 0.3 (4) O8—N6—C12—C7 147.2 (3)
C5—N2—C4—C3 −178.1 (3) O10—C13—C14—C15 178.2 (3)
C2—C3—C4—C6 92.6 (5) C18—C13—C14—C15 −5.6 (4)
C2—C3—C4—N2 −89.5 (4) O10—C13—C14—N7 −5.3 (5)
C6—N3—C5—N2 1.7 (5) C18—C13—C14—N7 170.9 (2)
C4—N2—C5—N3 −1.2 (5) O12—N7—C14—C15 −150.2 (3)
N2—C4—C6—N3 0.7 (4) O11—N7—C14—C15 28.7 (4)
C3—C4—C6—N3 179.0 (4) O12—N7—C14—C13 33.0 (4)
C5—N3—C6—C4 −1.5 (5) O11—N7—C14—C13 −148.1 (3)
O3—C7—C8—C9 −175.4 (3) C13—C14—C15—C16 1.0 (5)
C12—C7—C8—C9 0.4 (4) N7—C14—C15—C16 −175.5 (2)
O3—C7—C8—N4 2.6 (5) C14—C15—C16—C17 4.9 (4)
C12—C7—C8—N4 178.4 (3) C14—C15—C16—N8 −178.0 (3)
O5—N4—C8—C9 −139.3 (3) O13—N8—C16—C15 −3.4 (4)
O4—N4—C8—C9 40.2 (4) O14—N8—C16—C15 175.9 (3)
O5—N4—C8—C7 42.6 (5) O13—N8—C16—C17 173.8 (3)
O4—N4—C8—C7 −138.0 (3) O14—N8—C16—C17 −6.9 (4)
C7—C8—C9—C10 −1.4 (5) C15—C16—C17—C18 −5.4 (4)
N4—C8—C9—C10 −179.4 (3) N8—C16—C17—C18 177.5 (3)
C8—C9—C10—C11 2.2 (4) C16—C17—C18—C13 0.1 (5)
C8—C9—C10—N5 179.8 (3) C16—C17—C18—N9 176.9 (3)
O6—N5—C10—C9 3.9 (4) O10—C13—C18—C17 −178.8 (3)
O7—N5—C10—C9 −175.1 (3) C14—C13—C18—C17 5.1 (4)
O6—N5—C10—C11 −178.5 (3) O10—C13—C18—N9 4.4 (5)
O7—N5—C10—C11 2.5 (4) C14—C13—C18—N9 −171.8 (3)
C9—C10—C11—C12 −2.2 (4) O16—N9—C18—C17 147.2 (3)
N5—C10—C11—C12 −179.7 (3) O15—N9—C18—C17 −31.3 (4)
C10—C11—C12—C7 1.2 (5) O16—N9—C18—C13 −35.7 (4)
C10—C11—C12—N6 178.6 (2) O15—N9—C18—C13 145.8 (3)
O3—C7—C12—C11 175.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O10 0.89 2.19 2.909 (3) 138
N1—H1A···O12 0.89 2.11 2.841 (4) 139
N1—H1B···O18W 0.89 1.85 2.700 (5) 158
N1—H1C···O15i 0.89 2.16 3.007 (4) 159
N2—H2B···O10 0.91 (5) 1.86 (5) 2.709 (4) 154 (4)
N2—H2B···O16 0.91 (5) 2.49 (4) 3.125 (4) 128 (3)
N3—H3···O9ii 0.86 2.56 2.992 (5) 112
N3—H3···O14ii 0.86 2.25 3.077 (4) 160
O2—H2···O3iii 0.82 1.86 2.657 (3) 165
O17W—H17A···O5iv 0.84 (2) 2.27 (3) 3.082 (4) 162 (9)
O17W—H17B···O3 0.84 (2) 2.14 (8) 2.864 (4) 144 (12)
O18W—H18A···O17Wv 0.83 (2) 1.83 (2) 2.664 (5) 176 (5)
O18W—H18B···O7 0.83 (2) 2.32 (4) 3.005 (5) 140 (6)
C3—H3B···O10 0.97 2.59 3.210 (4) 122
C9—H9···O8vi 0.93 2.40 3.177 (4) 141
C17—H17···O11iv 0.93 2.36 3.177 (3) 147

Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x+2, y−1/2, −z+2; (iv) x, y, z−1; (v) −x+2, y−1/2, −z+1; (vi) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2602).

References

  1. Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849–5854.
  2. Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1–32.
  3. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.
  6. Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1311–1331.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem. 68, 1195–1199.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.
  13. Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37–39.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013949/su2602sup1.cif

e-69-0o957-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013949/su2602Isup2.hkl

e-69-0o957-Isup2.hkl (143.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013949/su2602Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES