Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 25;69(Pt 6):o963. doi: 10.1107/S1600536813013779

2-(9H-Fluoren-9-yl)-4-(4-fluoro­anilino)-4-oxo­butanoic acid

Tetiana Matviiuk a, Michel Baltas b, Zoia Voitenko a, Marian Gorichko a,*, Christian Lherbet c
PMCID: PMC3685102  PMID: 23795121

Abstract

In the title compound, C23H18FNO3, the tricyclic 9-fluorenyl system is approximately planar (r.m.s. deviation = 0.0279 Å). The N—C(=O) bond length is comparatively short [1.359 (3) Å], which is typical for such conjugated systems. The N atom has a planar configuration [sum of bond angles= 359.8°] due to conjugation of its lone pair with the π-system of the carbonyl group. In the crystal, a three-dimensional network is formed through N—H⋯O and O—H⋯O hydrogen bonds between the amide and carb­oxy­lic acid groups and carbonyl O-atom acceptors.

Related literature  

For the synthesis of various succinic anhydrides, see: Clar (1942). For biological studies on substituted succinimides, see: Carroll et al. (2007); Miller & Johns (1951); Patsalos (2005); Rankin et al. (1986). For the synthesis of substituted phenysuccinamic acids, see: Galustyan et al. (2000); Stephani et al. (2002).graphic file with name e-69-0o963-scheme1.jpg

Experimental  

Crystal data  

  • C23H18FNO3

  • M r = 375.38

  • Monoclinic, Inline graphic

  • a = 10.2048 (6) Å

  • b = 18.5170 (11) Å

  • c = 9.6164 (6) Å

  • β = 90.494 (4)°

  • V = 1817.07 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.45 × 0.10 × 0.03 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2008) T min = 0.957, T max = 0.997

  • 8408 measured reflections

  • 3205 independent reflections

  • 1744 reflections with I > 2σ(I)

  • R int = 0.081

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.104

  • S = 1.00

  • 3205 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813013779/mw2107sup1.cif

e-69-0o963-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013779/mw2107Isup2.hkl

e-69-0o963-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013779/mw2107Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.98 (4) 1.71 (4) 2.682 (3) 175 (3)
N1—H1N⋯O3ii 0.88 (2) 2.02 (3) 2.891 (3) 172 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Derivatives of the pyrrolidine-2,5-dione fragment are common structural motifs in medicinal chemistry (Patsalos, 2005; Rankin, et al., 1986). These molecules containing succinimide as a structural fragment were employed in drug design in response to their binding efficacy and low toxicity. Some pyrrolidine-2,5-dione derivatives were synthesized via interaction of succinic anhydride with different amines and futher cyclization, for example the synthesis of an nicotinic acetylcholine receptor antagonist (Carroll et al., 2007). Cyclic anhydrides of dicarboxylic acids react readily with amines forming dicarboxylic acid monoamides (Miller et al., 1951). Reaction of unsymmetrically substituted cyclic anhydrides may occur with formation of two possible regioisomers having the substituent either α or β to the amide group. (Stephani et al., 2002.; Galustyan et al., 2000). Herein, we report the regioselective synthesis and crystal structure of the title compound (II). The novel 2-(9H-fluoren-9-yl)-4-[(4-fluorophenyl)amino]-4-oxobutanoic acid, C23H18FNO3, (Fig. 1) is obtained as a product in the ring-opening reaction of 3-(9H-fluoren-9-yl)dihydrofuran-2,5-dione (I) (Clar, 1942) (see Fig. 2). The regioselectivity of the reaction depends on temperature. The reaction of anhydride (I) with p-F-aniline was carried out in dry THF at room temperature and a reactant ratio 1:1. Only one regioisomer (β-succinamic acid) was detected and isolated (91% yield). When the reaction was carried out at higher temperature (55 °C), a mixture of regioisomers was obtained.

In the structure of (II) (Fig. 1) the tricyclic 9-fluorenyl system C1—C13 is planar with an r.m.s. deviation of 0.0279 Å, wich is typical for this class of compounds. The N1—C17 bond distance is comparatively short (1.359 (3) Å) which is typical for such conjugated systems The N1 atom has a planar configuration, as the sum of bond angles on the N1 atom is 359.5 (17)°, due to conjugation of the lone pair of N1 atom with π-system of the carbonyl group. Molecules of compound (II) (Fig. 1) in the crystal are connected across a center of inversion by O1—H1···O2a hydrogen bonds forming dimers which are then connected into chains parallel to c by N1—H1N···O3b bonds (Table 1).

Experimental

The synthesis of the cyclic anhydride (I) (Fig. 2) was carried out according to the literature method (Clar, 1942). Compound (I) (92 mg, 0.35 mmol)was dissolved in dry THF, p-F-aniline (39 mg, 0.35 mmol) was added and the mixture was stirred overnight at room temperature. Thereafter, solvent was evaporated and the residue dissolved in a saturated solution of sodium hydrocarbonate, filtered and acidified with 1 N HCl. The resulting precipitate was filtered off and recrystalized from ethanol. White powder, yield: 113 mg, 86%; m.p.: 171–172 °C. 1H NMR (300 MHz, [D6]DMSO, δ): 1.28 (d, J = 15.6 Hz, 1 H), 2.15 (dd, J = 11.4 Hz, J = 15.9 Hz, 1 H), 3.85 (d, J = 10.5 Hz, 1 H), 4.52 (br. s, 1 H), 6.90–8.05 (m, 12 H), 9.70 (br. s, 1 H), 12.86 (br. s, 1 H); 13C{1H} NMR (75 MHz, CD3OD, δ): 32.6, 44.3, 49.4, 115.8, 116.1, 120.9, 121.1, 122.8, 122.9, 125.4, 126.1, 128.1, 128.6, 128.8, 128.9, 136.0, 142.6, 143.1, 144.7, 146.0, 160.0 (d, J = 241.8 Hz), 172.5, 177.2. 19 F NMR (282 MHz, CD3OD, δ): = -116.0.

Refinement

Carboxylic acid and amide H-atoms were located in a difference-Fourier synthesis and both positional and displacement parameters were allowed to refine. Other hydrogen atoms were positioned geometrically, with C—H = 0.96–0.98 Å and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(methine or methylene C) or 1.5Ueq(methyl C). In the absence of a suitable heavy atom, the absolute configuration of the title compound could not be determined.

Figures

Fig. 1.

Fig. 1.

The molecular structure and atom numbering scheme for the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The synthetic route to the title compound (II).

Crystal data

C23H18FNO3 F(000) = 784
Mr = 375.38 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.2048 (6) Å Cell parameters from 8408 reflections
b = 18.5170 (11) Å θ = 2.3–25.0°
c = 9.6164 (6) Å µ = 0.10 mm1
β = 90.494 (4)° T = 296 K
V = 1817.07 (19) Å3 Plate, colourless
Z = 4 0.45 × 0.10 × 0.03 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3205 independent reflections
Radiation source: fine-focus sealed tube 1744 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.081
ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: numerical (SADABS; Bruker, 2008) h = −12→11
Tmin = 0.957, Tmax = 0.997 k = −22→19
8408 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.027P)2] where P = (Fo2 + 2Fc2)/3
3205 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C18 0.0042 (3) 0.33919 (14) 0.9353 (3) 0.0216 (7)
C14 0.2656 (2) 0.11015 (14) 0.9369 (3) 0.0202 (7)
H14 0.2753 0.1104 0.8356 0.024*
C15 0.1482 (3) 0.06320 (16) 0.9696 (3) 0.0229 (7)
C17 0.1516 (3) 0.23277 (15) 0.8999 (3) 0.0203 (7)
C13 0.3918 (2) 0.07796 (15) 0.9989 (3) 0.0214 (7)
H13 0.3919 0.0254 0.9864 0.026*
C11 0.5535 (3) 0.10772 (16) 0.7975 (3) 0.0319 (8)
H11 0.5028 0.0842 0.7306 0.038*
C19 −0.0347 (3) 0.35150 (16) 0.7993 (3) 0.0296 (8)
H19 −0.0054 0.3213 0.7288 0.035*
C7 0.5909 (3) 0.14513 (15) 1.0345 (3) 0.0259 (7)
C20 −0.1172 (3) 0.40861 (16) 0.7674 (3) 0.0323 (8)
H20 −0.1438 0.4170 0.6761 0.039*
C2 0.3348 (3) 0.08065 (16) 1.2646 (3) 0.0330 (8)
H2 0.2598 0.0526 1.2538 0.040*
C4 0.4815 (3) 0.14928 (17) 1.4117 (3) 0.0413 (9)
H4 0.5029 0.1676 1.4990 0.050*
C1 0.4133 (3) 0.09618 (15) 1.1518 (3) 0.0236 (7)
C16 0.2473 (3) 0.18896 (14) 0.9832 (3) 0.0202 (7)
H16A 0.2193 0.1889 1.0794 0.024*
H16B 0.3319 0.2128 0.9802 0.024*
C12 0.5141 (3) 0.11031 (14) 0.9341 (3) 0.0231 (7)
C23 −0.0407 (3) 0.38466 (16) 1.0388 (3) 0.0341 (8)
H23 −0.0158 0.3766 1.1308 0.041*
C21 −0.1584 (3) 0.45197 (17) 0.8716 (4) 0.0379 (9)
C3 0.3702 (3) 0.10780 (17) 1.3944 (3) 0.0399 (9)
H3 0.3180 0.0978 1.4708 0.048*
C8 0.7078 (3) 0.17802 (16) 0.9971 (3) 0.0346 (8)
H8 0.7591 0.2017 1.0633 0.042*
C9 0.7465 (3) 0.17492 (17) 0.8601 (4) 0.0403 (9)
H9 0.8251 0.1962 0.8342 0.048*
C6 0.5273 (3) 0.13700 (15) 1.1689 (3) 0.0280 (8)
C22 −0.1219 (3) 0.44173 (17) 1.0068 (3) 0.0441 (10)
H22 −0.1514 0.4727 1.0760 0.053*
C10 0.6708 (3) 0.14094 (17) 0.7615 (3) 0.0408 (9)
H10 0.6980 0.1401 0.6695 0.049*
C5 0.5615 (3) 0.16381 (16) 1.2995 (3) 0.0371 (9)
H5 0.6373 0.1912 1.3112 0.045*
O3 0.13680 (18) 0.22640 (10) 0.77394 (19) 0.0278 (5)
O2 0.15591 (18) 0.00507 (11) 1.0272 (2) 0.0308 (5)
O1 0.0355 (2) 0.09099 (11) 0.9269 (2) 0.0361 (6)
N1 0.0878 (2) 0.28259 (13) 0.9779 (2) 0.0206 (6)
F1 −0.23954 (19) 0.50859 (10) 0.83812 (19) 0.0604 (6)
H1O −0.038 (3) 0.0582 (18) 0.943 (3) 0.086 (13)*
H1N 0.106 (2) 0.2840 (13) 1.067 (3) 0.025 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C18 0.0223 (17) 0.0195 (18) 0.0232 (17) 0.0001 (14) 0.0031 (14) 0.0025 (14)
C14 0.0212 (17) 0.0185 (17) 0.0208 (16) −0.0012 (13) −0.0029 (13) −0.0015 (13)
C15 0.0235 (18) 0.0241 (19) 0.0212 (16) −0.0002 (15) −0.0008 (14) −0.0043 (15)
C17 0.0206 (17) 0.0203 (18) 0.0201 (17) −0.0037 (14) −0.0002 (14) 0.0041 (14)
C13 0.0202 (17) 0.0189 (17) 0.0249 (17) −0.0007 (13) −0.0062 (14) 0.0026 (14)
C11 0.0275 (19) 0.033 (2) 0.035 (2) 0.0073 (16) −0.0026 (16) 0.0010 (16)
C19 0.0331 (19) 0.0319 (19) 0.0236 (18) 0.0101 (16) −0.0028 (15) 0.0008 (15)
C7 0.0214 (17) 0.0211 (18) 0.0350 (19) 0.0025 (14) −0.0050 (16) 0.0035 (15)
C20 0.036 (2) 0.034 (2) 0.0263 (18) 0.0095 (17) −0.0052 (16) 0.0077 (16)
C2 0.0294 (19) 0.036 (2) 0.0334 (19) −0.0054 (16) −0.0049 (16) 0.0091 (16)
C4 0.052 (2) 0.043 (2) 0.028 (2) 0.0059 (19) −0.0134 (19) −0.0004 (17)
C1 0.0211 (17) 0.0223 (18) 0.0275 (18) 0.0015 (14) −0.0009 (15) 0.0063 (14)
C16 0.0191 (17) 0.0213 (17) 0.0203 (16) 0.0005 (13) −0.0008 (13) −0.0002 (13)
C12 0.0201 (17) 0.0206 (17) 0.0285 (18) 0.0032 (13) 0.0008 (15) 0.0071 (14)
C23 0.050 (2) 0.032 (2) 0.0201 (17) 0.0133 (17) 0.0068 (16) 0.0042 (15)
C21 0.035 (2) 0.030 (2) 0.048 (2) 0.0173 (17) 0.0076 (18) 0.0156 (18)
C3 0.040 (2) 0.053 (2) 0.027 (2) −0.0014 (18) −0.0026 (17) 0.0085 (17)
C8 0.0218 (18) 0.036 (2) 0.045 (2) −0.0044 (15) −0.0080 (17) 0.0117 (17)
C9 0.0217 (19) 0.044 (2) 0.055 (2) −0.0021 (16) 0.0040 (19) 0.0211 (19)
C6 0.0289 (19) 0.0236 (19) 0.0316 (19) 0.0000 (15) −0.0056 (16) 0.0029 (15)
C22 0.066 (3) 0.036 (2) 0.031 (2) 0.0247 (19) 0.0153 (19) 0.0060 (17)
C10 0.033 (2) 0.049 (2) 0.040 (2) 0.0059 (18) 0.0094 (18) 0.0125 (19)
C5 0.033 (2) 0.038 (2) 0.040 (2) −0.0025 (16) −0.0096 (18) 0.0042 (17)
O3 0.0411 (14) 0.0281 (12) 0.0141 (11) 0.0038 (10) −0.0010 (10) −0.0011 (10)
O2 0.0260 (13) 0.0231 (13) 0.0430 (13) −0.0037 (10) −0.0082 (10) 0.0084 (11)
O1 0.0187 (12) 0.0319 (14) 0.0576 (15) −0.0008 (11) −0.0042 (11) 0.0148 (11)
N1 0.0266 (15) 0.0235 (15) 0.0116 (14) 0.0062 (12) −0.0018 (12) 0.0010 (12)
F1 0.0747 (16) 0.0495 (13) 0.0572 (13) 0.0380 (11) 0.0059 (12) 0.0156 (11)

Geometric parameters (Å, º)

C18—C19 1.383 (4) C2—C1 1.385 (4)
C18—C23 1.385 (4) C2—C3 1.390 (4)
C18—N1 1.410 (3) C2—H2 0.9300
C14—C15 1.516 (3) C4—C3 1.380 (4)
C14—C13 1.535 (3) C4—C5 1.385 (4)
C14—C16 1.538 (3) C4—H4 0.9300
C14—H14 0.9800 C1—C6 1.396 (4)
C15—O2 1.212 (3) C16—H16A 0.9700
C15—O1 1.322 (3) C16—H16B 0.9700
C17—O3 1.225 (3) C23—C22 1.377 (4)
C17—N1 1.359 (3) C23—H23 0.9300
C17—C16 1.497 (4) C21—C22 1.362 (4)
C13—C1 1.522 (4) C21—F1 1.373 (3)
C13—C12 1.522 (3) C3—H3 0.9300
C13—H13 0.9800 C8—C9 1.380 (4)
C11—C12 1.378 (4) C8—H8 0.9300
C11—C10 1.391 (4) C9—C10 1.371 (4)
C11—H11 0.9300 C9—H9 0.9300
C19—C20 1.384 (4) C6—C5 1.392 (4)
C19—H19 0.9300 C22—H22 0.9300
C7—C8 1.390 (4) C10—H10 0.9300
C7—C12 1.396 (4) C5—H5 0.9300
C7—C6 1.458 (4) O1—H1O 0.98 (4)
C20—C21 1.353 (4) N1—H1N 0.88 (2)
C20—H20 0.9300
C19—C18—C23 119.1 (3) C6—C1—C13 110.3 (2)
C19—C18—N1 124.5 (3) C17—C16—C14 116.1 (2)
C23—C18—N1 116.5 (3) C17—C16—H16A 108.3
C15—C14—C13 111.0 (2) C14—C16—H16A 108.3
C15—C14—C16 112.7 (2) C17—C16—H16B 108.3
C13—C14—C16 111.1 (2) C14—C16—H16B 108.3
C15—C14—H14 107.3 H16A—C16—H16B 107.4
C13—C14—H14 107.3 C11—C12—C7 120.6 (3)
C16—C14—H14 107.3 C11—C12—C13 128.6 (3)
O2—C15—O1 122.7 (3) C7—C12—C13 110.8 (2)
O2—C15—C14 123.8 (3) C22—C23—C18 120.5 (3)
O1—C15—C14 113.5 (3) C22—C23—H23 119.7
O3—C17—N1 123.8 (3) C18—C23—H23 119.7
O3—C17—C16 123.5 (3) C20—C21—C22 122.7 (3)
N1—C17—C16 112.7 (2) C20—C21—F1 118.0 (3)
C1—C13—C12 101.3 (2) C22—C21—F1 119.3 (3)
C1—C13—C14 113.7 (2) C4—C3—C2 121.1 (3)
C12—C13—C14 112.1 (2) C4—C3—H3 119.4
C1—C13—H13 109.8 C2—C3—H3 119.4
C12—C13—H13 109.8 C9—C8—C7 118.8 (3)
C14—C13—H13 109.8 C9—C8—H8 120.6
C12—C11—C10 118.7 (3) C7—C8—H8 120.6
C12—C11—H11 120.7 C10—C9—C8 121.0 (3)
C10—C11—H11 120.7 C10—C9—H9 119.5
C18—C19—C20 120.3 (3) C8—C9—H9 119.5
C18—C19—H19 119.9 C5—C6—C1 120.1 (3)
C20—C19—H19 119.9 C5—C6—C7 130.7 (3)
C8—C7—C12 120.1 (3) C1—C6—C7 109.2 (3)
C8—C7—C6 131.6 (3) C21—C22—C23 118.6 (3)
C12—C7—C6 108.3 (3) C21—C22—H22 120.7
C21—C20—C19 118.8 (3) C23—C22—H22 120.7
C21—C20—H20 120.6 C9—C10—C11 120.8 (3)
C19—C20—H20 120.6 C9—C10—H10 119.6
C1—C2—C3 118.7 (3) C11—C10—H10 119.6
C1—C2—H2 120.6 C4—C5—C6 119.2 (3)
C3—C2—H2 120.6 C4—C5—H5 120.4
C3—C4—C5 120.3 (3) C6—C5—H5 120.4
C3—C4—H4 119.9 C15—O1—H1O 112 (2)
C5—C4—H4 119.9 C17—N1—C18 129.5 (2)
C2—C1—C6 120.5 (3) C17—N1—H1N 117.8 (17)
C2—C1—C13 129.2 (3) C18—N1—H1N 112.5 (17)
C13—C14—C15—O2 −5.7 (4) C14—C13—C12—C7 119.0 (3)
C16—C14—C15—O2 −131.0 (3) C19—C18—C23—C22 −0.6 (5)
C13—C14—C15—O1 175.6 (2) N1—C18—C23—C22 179.5 (3)
C16—C14—C15—O1 50.3 (3) C19—C20—C21—C22 0.0 (5)
C15—C14—C13—C1 −82.6 (3) C19—C20—C21—F1 179.7 (3)
C16—C14—C13—C1 43.7 (3) C5—C4—C3—C2 −0.9 (5)
C15—C14—C13—C12 163.2 (2) C1—C2—C3—C4 −0.2 (5)
C16—C14—C13—C12 −70.6 (3) C12—C7—C8—C9 −0.6 (4)
C23—C18—C19—C20 0.2 (4) C6—C7—C8—C9 177.5 (3)
N1—C18—C19—C20 −180.0 (3) C7—C8—C9—C10 0.8 (5)
C18—C19—C20—C21 0.2 (5) C2—C1—C6—C5 −1.4 (4)
C3—C2—C1—C6 1.4 (4) C13—C1—C6—C5 175.8 (3)
C3—C2—C1—C13 −175.2 (3) C2—C1—C6—C7 179.9 (3)
C12—C13—C1—C2 −179.8 (3) C13—C1—C6—C7 −2.9 (3)
C14—C13—C1—C2 59.7 (4) C8—C7—C6—C5 4.4 (5)
C12—C13—C1—C6 3.3 (3) C12—C7—C6—C5 −177.4 (3)
C14—C13—C1—C6 −117.1 (3) C8—C7—C6—C1 −177.1 (3)
O3—C17—C16—C14 −36.1 (4) C12—C7—C6—C1 1.1 (3)
N1—C17—C16—C14 147.0 (2) C20—C21—C22—C23 −0.5 (5)
C15—C14—C16—C17 −71.6 (3) F1—C21—C22—C23 179.9 (3)
C13—C14—C16—C17 163.1 (2) C18—C23—C22—C21 0.8 (5)
C10—C11—C12—C7 −0.5 (4) C8—C9—C10—C11 −0.9 (5)
C10—C11—C12—C13 −179.5 (3) C12—C11—C10—C9 0.7 (5)
C8—C7—C12—C11 0.4 (4) C3—C4—C5—C6 0.9 (5)
C6—C7—C12—C11 −178.1 (3) C1—C6—C5—C4 0.2 (4)
C8—C7—C12—C13 179.6 (2) C7—C6—C5—C4 178.6 (3)
C6—C7—C12—C13 1.1 (3) O3—C17—N1—C18 −5.9 (5)
C1—C13—C12—C11 176.4 (3) C16—C17—N1—C18 171.1 (3)
C14—C13—C12—C11 −61.9 (4) C19—C18—N1—C17 4.0 (5)
C1—C13—C12—C7 −2.6 (3) C23—C18—N1—C17 −176.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2i 0.98 (4) 1.71 (4) 2.682 (3) 175 (3)
N1—H1N···O3ii 0.88 (2) 2.02 (3) 2.891 (3) 172 (2)

Symmetry codes: (i) −x, −y, −z+2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2107).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carroll, I. F., Ma, W., Navarro, H. A., Abraham, P., Wolckenhauer, S. A., Damaj, M. I. & Martin, B. R. (2007). Bioorg. Med. Chem. 15, 678–685. [DOI] [PMC free article] [PubMed]
  4. Clar, E. (1942). Reichsamt Wirtschaftsausbau Chem. Ber., Pruf-Nr. 015(PB52017), pp. 859–878.
  5. Galustyan, G. G., Levkovich, M. G. & Abdullaev, N. D. (2000). Chem. Heterocycl. Compd, 36, 1402–1408.
  6. Miller, C. A. & Johns, I. B. (1951). J. Am. Chem. Soc. 73, 4895–4898.
  7. Patsalos, P. N. (2005). Epilepsia, 46(Suppl. 9), 140–148. [DOI] [PubMed]
  8. Rankin, G., Cressey-Venezia, K., Wang, R. & Brown, P. J. (1986). J. Appl. Toxicol. 6, 349–356. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stephani, R., Cesare, V., Sadarangani, I. & Lengyel, I. (2002). Synthesis, pp. 47–52.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813013779/mw2107sup1.cif

e-69-0o963-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013779/mw2107Isup2.hkl

e-69-0o963-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013779/mw2107Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES