Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 25;69(Pt 6):o967. doi: 10.1107/S1600536813013354

N-[(2,6-Di­ethyl­phen­yl)carbamo­thio­yl]-2,2-di­phenyl­acetamide

Mohd Sukeri Mohd Yusof a, Nur Rafikah Razali a, Suhana Arshad b,, Azhar Abdul Rahman b, Ibrahim Abdul Razak b,*,§
PMCID: PMC3685105  PMID: 23795124

Abstract

In the title compound, C25H26N2OS, the diethyl-substituted benzene ring forms dihedral angles of 67.38 (9) and 55.32 (9)° with the terminal benzene rings. The mol­ecule adopts a transcis conformation with respect to the orientations of the di­phenyl­methane and 1,3-di­ethyl­benzene groups with respect to the S atom across the C—N bonds. This conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers, forming R 2 2(6) loops. The dimer linkage is reinforced by a pair of C—H⋯S hydrogen bonds, which generate R 2 2(8) loops. Weak C—H⋯π and π–π [centroid–centroid seperation = 3.8821 (10) Å] inter­actions also occur in the crystal structure.

Related literature  

For related structures and backgroud to thio­urea derivatives, see: Yusof et al. (2012a ,b ). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-69-0o967-scheme1.jpg

Experimental  

Crystal data  

  • C25H26N2OS

  • M r = 402.54

  • Triclinic, Inline graphic

  • a = 8.0091 (1) Å

  • b = 11.7289 (2) Å

  • c = 11.8923 (2) Å

  • α = 79.008 (1)°

  • β = 80.628 (1)°

  • γ = 83.936 (1)°

  • V = 1078.79 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.41 × 0.17 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.934, T max = 0.987

  • 20294 measured reflections

  • 3767 independent reflections

  • 3123 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.087

  • S = 1.06

  • 3767 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013354/hb7080sup1.cif

e-69-0o967-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013354/hb7080Isup2.hkl

e-69-0o967-Isup2.hkl (184.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013354/hb7080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.86 (2) 1.96 (2) 2.6702 (19) 140 (2)
N1—H1N1⋯S1i 0.85 (2) 2.59 (2) 3.4225 (16) 167.4 (18)
C7—H7A⋯S1i 1.00 2.64 3.6172 (17) 165
C10—H10ACg1ii 0.95 2.56 3.3859 (19) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811151 to conduct this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship (ASTS).

supplementary crystallographic information

Comment

As part of our ongoing studies of thiourea derivatives (Yusof et al., 2012a,b), we now describe the structure of the title compound, (I), (Fig. 1).

The bond lengths and angles are comparable to those in related structure (Yusof et al., 2012a,b). The diethyl-substituted benzene ring (C16–C21) forms dihedral angles of 67.38 (9) and 55.32 (9)° with the terminal benzene rings (C1–C6 & C8–C13), respectively. The molecule adopts a trans-cis conformation with respect to the position of diphenylmethane and 1,3-diethylbenzene groups to the sulfur (S1) atom across the C–N bonds, respectively. These configuration further resulting in an S(6) graph-set motif (Bernstein et al., 1995) via intra-molecular N2—H1N2···O1 hydrogen bond (Table 1).

In the crystal (Fig. 2), molecules are linked into dimers via N1—H1N1···S1 and C7—H7A···S1 hydrogen bonds (Table 1), generating R22(6) and R22(8) loops. C10—H10A···Cg1 (Table 1) interactions and π–π interactions of Cg1···Cg1 = 3.8821 (10) Å (symmetry code: -x, 2-y, 2-z) further stabilized the crystal structure (Cg1 is the centroid of C1–C6).

Experimental

An acetone (30 ml) solution of 2,6-diethylaniline (2.01 g, 13.5 mmol) was added to a round-bottom flask containing 2,2-diphenylacetyl chloride (3.10 g, 13.5 mmol) and ammonium thiocyanate (1.03 g, 13.5 mmol). The mixture was put at reflux for 2.5 h then filtered off and left to evaporate at room temperature. The colourless precipitate obtained was washed with water and cold ethanol. Colourless plates were obtained by recrystallization of the precipitate from MeOH solution.

Refinement

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.85 (2) and 0.86 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).A rotating group model was applied to the methyl groups. In the final refinement two outliers were omitted (6 - 2 8 and 5 - 3 6).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C25H26N2OS Z = 2
Mr = 402.54 F(000) = 428
Triclinic, P1 Dx = 1.239 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0091 (1) Å Cell parameters from 7540 reflections
b = 11.7289 (2) Å θ = 2.7–31.3°
c = 11.8923 (2) Å µ = 0.17 mm1
α = 79.008 (1)° T = 100 K
β = 80.628 (1)° Plate, colourless
γ = 83.936 (1)° 0.41 × 0.17 × 0.08 mm
V = 1078.79 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3767 independent reflections
Radiation source: fine-focus sealed tube 3123 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.934, Tmax = 0.987 k = −13→13
20294 measured reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.7158P] where P = (Fo2 + 2Fc2)/3
3767 reflections (Δ/σ)max = 0.001
272 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.14725 (6) 0.37823 (4) 0.90032 (4) 0.02277 (14)
O1 0.23366 (16) 0.74355 (10) 0.69663 (10) 0.0209 (3)
N1 0.1116 (2) 0.60788 (12) 0.84279 (13) 0.0175 (3)
H1N1 0.041 (3) 0.6010 (17) 0.9051 (18) 0.027 (6)*
N2 0.32515 (19) 0.51541 (13) 0.72816 (13) 0.0176 (3)
H1N2 0.334 (3) 0.5850 (19) 0.6903 (18) 0.030 (6)*
C1 0.1681 (2) 0.88822 (15) 0.95814 (15) 0.0192 (4)
H1A 0.1494 0.8182 1.0122 0.023*
C2 0.2650 (2) 0.96979 (16) 0.98238 (16) 0.0214 (4)
H2A 0.3124 0.9555 1.0525 0.026*
C3 0.2921 (2) 1.07207 (16) 0.90366 (16) 0.0226 (4)
H3A 0.3599 1.1275 0.9190 0.027*
C4 0.2204 (2) 1.09329 (15) 0.80297 (16) 0.0217 (4)
H4A 0.2377 1.1640 0.7498 0.026*
C5 0.1228 (2) 1.01165 (15) 0.77866 (16) 0.0191 (4)
H5A 0.0733 1.0272 0.7094 0.023*
C6 0.0981 (2) 0.90785 (14) 0.85548 (15) 0.0151 (4)
C7 0.0022 (2) 0.81080 (14) 0.83243 (14) 0.0154 (4)
H7A −0.0538 0.7715 0.9094 0.018*
C8 −0.1370 (2) 0.84747 (14) 0.75624 (15) 0.0165 (4)
C9 −0.3053 (2) 0.84527 (15) 0.80968 (16) 0.0194 (4)
H9A −0.3293 0.8223 0.8913 0.023*
C10 −0.4384 (2) 0.87616 (15) 0.74551 (16) 0.0218 (4)
H10A −0.5525 0.8745 0.7832 0.026*
C11 −0.4046 (3) 0.90924 (16) 0.62722 (17) 0.0239 (4)
H11A −0.4954 0.9304 0.5831 0.029*
C12 −0.2384 (3) 0.91175 (17) 0.57251 (16) 0.0261 (5)
H12A −0.2155 0.9349 0.4908 0.031*
C13 −0.1047 (2) 0.88063 (16) 0.63647 (16) 0.0219 (4)
H13A 0.0091 0.8820 0.5982 0.026*
C14 0.1283 (2) 0.71976 (15) 0.78288 (15) 0.0159 (4)
C15 0.2009 (2) 0.50521 (15) 0.81792 (15) 0.0170 (4)
C16 0.4354 (2) 0.41906 (14) 0.69377 (15) 0.0164 (4)
C17 0.4107 (2) 0.37685 (15) 0.59603 (15) 0.0196 (4)
C18 0.5229 (3) 0.28617 (16) 0.56247 (17) 0.0271 (5)
H18A 0.5095 0.2562 0.4959 0.032*
C19 0.6536 (3) 0.23894 (17) 0.62419 (19) 0.0310 (5)
H19A 0.7280 0.1764 0.6006 0.037*
C20 0.6758 (2) 0.28280 (16) 0.72028 (18) 0.0258 (5)
H20A 0.7659 0.2500 0.7622 0.031*
C21 0.5685 (2) 0.37423 (15) 0.75657 (15) 0.0195 (4)
C22 0.6019 (3) 0.42551 (17) 0.85727 (16) 0.0260 (5)
H22A 0.6723 0.3677 0.9053 0.031*
H22B 0.4926 0.4417 0.9060 0.031*
C23 0.6922 (3) 0.53785 (18) 0.81866 (18) 0.0333 (5)
H23A 0.7139 0.5662 0.8869 0.050*
H23B 0.6204 0.5969 0.7745 0.050*
H23C 0.8001 0.5226 0.7698 0.050*
C24 0.2659 (3) 0.42388 (17) 0.52918 (17) 0.0278 (5)
H24A 0.3007 0.4157 0.4471 0.033*
H24B 0.2414 0.5079 0.5318 0.033*
C25 0.1047 (3) 0.36140 (18) 0.57675 (19) 0.0326 (5)
H25A 0.0156 0.3941 0.5296 0.049*
H25B 0.0670 0.3719 0.6570 0.049*
H25C 0.1280 0.2781 0.5741 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0282 (3) 0.0146 (2) 0.0217 (3) −0.0026 (2) 0.0066 (2) −0.00198 (18)
O1 0.0191 (7) 0.0186 (6) 0.0223 (7) −0.0033 (5) 0.0043 (6) −0.0022 (5)
N1 0.0161 (8) 0.0163 (8) 0.0178 (8) −0.0019 (6) 0.0040 (7) −0.0024 (6)
N2 0.0186 (9) 0.0137 (8) 0.0181 (8) −0.0010 (6) 0.0015 (7) −0.0009 (6)
C1 0.0192 (10) 0.0180 (9) 0.0191 (10) 0.0007 (8) −0.0016 (8) −0.0023 (7)
C2 0.0208 (11) 0.0249 (10) 0.0210 (10) −0.0003 (8) −0.0064 (8) −0.0079 (8)
C3 0.0195 (11) 0.0236 (10) 0.0270 (11) −0.0042 (8) −0.0011 (8) −0.0106 (8)
C4 0.0233 (11) 0.0166 (9) 0.0241 (10) −0.0039 (8) 0.0012 (8) −0.0032 (8)
C5 0.0187 (10) 0.0194 (9) 0.0188 (9) −0.0005 (8) −0.0013 (8) −0.0039 (7)
C6 0.0110 (9) 0.0165 (9) 0.0178 (9) 0.0006 (7) 0.0004 (7) −0.0057 (7)
C7 0.0133 (9) 0.0166 (9) 0.0152 (9) −0.0021 (7) 0.0001 (7) −0.0012 (7)
C8 0.0162 (10) 0.0125 (8) 0.0218 (10) −0.0026 (7) −0.0015 (8) −0.0058 (7)
C9 0.0203 (10) 0.0183 (9) 0.0198 (10) −0.0032 (8) 0.0009 (8) −0.0059 (7)
C10 0.0140 (10) 0.0232 (10) 0.0297 (11) −0.0012 (8) −0.0026 (8) −0.0092 (8)
C11 0.0220 (11) 0.0230 (10) 0.0304 (11) −0.0007 (8) −0.0115 (9) −0.0083 (8)
C12 0.0307 (12) 0.0293 (11) 0.0188 (10) −0.0037 (9) −0.0059 (9) −0.0026 (8)
C13 0.0186 (11) 0.0255 (10) 0.0214 (10) −0.0052 (8) −0.0003 (8) −0.0038 (8)
C14 0.0143 (10) 0.0173 (9) 0.0180 (9) −0.0050 (7) −0.0052 (8) −0.0035 (7)
C15 0.0155 (10) 0.0180 (9) 0.0182 (9) −0.0018 (7) −0.0031 (8) −0.0043 (7)
C16 0.0144 (10) 0.0157 (9) 0.0180 (9) −0.0033 (7) 0.0016 (7) −0.0026 (7)
C17 0.0173 (10) 0.0222 (10) 0.0191 (10) −0.0107 (8) 0.0030 (8) −0.0027 (8)
C18 0.0269 (12) 0.0276 (11) 0.0285 (11) −0.0135 (9) 0.0090 (9) −0.0142 (9)
C19 0.0224 (12) 0.0218 (10) 0.0470 (13) −0.0013 (9) 0.0087 (10) −0.0136 (9)
C20 0.0164 (10) 0.0225 (10) 0.0372 (12) −0.0012 (8) −0.0027 (9) −0.0030 (9)
C21 0.0185 (10) 0.0176 (9) 0.0218 (10) −0.0050 (8) −0.0010 (8) −0.0018 (8)
C22 0.0252 (11) 0.0288 (11) 0.0241 (10) 0.0000 (9) −0.0078 (9) −0.0027 (8)
C23 0.0348 (13) 0.0402 (12) 0.0304 (12) −0.0117 (10) −0.0077 (10) −0.0125 (10)
C24 0.0294 (12) 0.0324 (11) 0.0229 (10) −0.0111 (9) −0.0050 (9) −0.0022 (9)
C25 0.0254 (12) 0.0320 (11) 0.0409 (13) −0.0077 (9) −0.0107 (10) 0.0003 (10)

Geometric parameters (Å, º)

S1—C15 1.6748 (17) C11—C12 1.384 (3)
O1—C14 1.225 (2) C11—H11A 0.9500
N1—C14 1.377 (2) C12—C13 1.391 (3)
N1—C15 1.391 (2) C12—H12A 0.9500
N1—H1N1 0.85 (2) C13—H13A 0.9500
N2—C15 1.332 (2) C16—C17 1.396 (3)
N2—C16 1.439 (2) C16—C21 1.401 (3)
N2—H1N2 0.86 (2) C17—C18 1.393 (3)
C1—C2 1.391 (3) C17—C24 1.510 (3)
C1—C6 1.395 (2) C18—C19 1.383 (3)
C1—H1A 0.9500 C18—H18A 0.9500
C2—C3 1.387 (3) C19—C20 1.383 (3)
C2—H2A 0.9500 C19—H19A 0.9500
C3—C4 1.380 (3) C20—C21 1.391 (3)
C3—H3A 0.9500 C20—H20A 0.9500
C4—C5 1.396 (3) C21—C22 1.510 (3)
C4—H4A 0.9500 C22—C23 1.527 (3)
C5—C6 1.387 (2) C22—H22A 0.9900
C5—H5A 0.9500 C22—H22B 0.9900
C6—C7 1.527 (2) C23—H23A 0.9800
C7—C14 1.525 (2) C23—H23B 0.9800
C7—C8 1.525 (2) C23—H23C 0.9800
C7—H7A 1.0000 C24—C25 1.526 (3)
C8—C13 1.392 (2) C24—H24A 0.9900
C8—C9 1.394 (2) C24—H24B 0.9900
C9—C10 1.389 (3) C25—H25A 0.9800
C9—H9A 0.9500 C25—H25B 0.9800
C10—C11 1.376 (3) C25—H25C 0.9800
C10—H10A 0.9500
C14—N1—C15 128.46 (15) O1—C14—N1 122.87 (16)
C14—N1—H1N1 115.8 (14) O1—C14—C7 123.13 (15)
C15—N1—H1N1 115.7 (14) N1—C14—C7 113.98 (14)
C15—N2—C16 124.03 (15) N2—C15—N1 116.69 (15)
C15—N2—H1N2 114.5 (14) N2—C15—S1 124.24 (14)
C16—N2—H1N2 121.5 (14) N1—C15—S1 119.07 (13)
C2—C1—C6 120.85 (16) C17—C16—C21 122.22 (17)
C2—C1—H1A 119.6 C17—C16—N2 118.95 (16)
C6—C1—H1A 119.6 C21—C16—N2 118.77 (16)
C3—C2—C1 119.62 (17) C18—C17—C16 117.69 (18)
C3—C2—H2A 120.2 C18—C17—C24 119.97 (17)
C1—C2—H2A 120.2 C16—C17—C24 122.32 (17)
C4—C3—C2 119.93 (17) C19—C18—C17 121.23 (18)
C4—C3—H3A 120.0 C19—C18—H18A 119.4
C2—C3—H3A 120.0 C17—C18—H18A 119.4
C3—C4—C5 120.51 (17) C20—C19—C18 119.91 (18)
C3—C4—H4A 119.7 C20—C19—H19A 120.0
C5—C4—H4A 119.7 C18—C19—H19A 120.0
C6—C5—C4 120.08 (17) C19—C20—C21 121.10 (19)
C6—C5—H5A 120.0 C19—C20—H20A 119.4
C4—C5—H5A 120.0 C21—C20—H20A 119.4
C5—C6—C1 118.98 (16) C20—C21—C16 117.83 (17)
C5—C6—C7 123.53 (16) C20—C21—C22 120.08 (18)
C1—C6—C7 117.46 (15) C16—C21—C22 122.03 (16)
C14—C7—C8 109.72 (14) C21—C22—C23 112.66 (16)
C14—C7—C6 109.54 (14) C21—C22—H22A 109.1
C8—C7—C6 116.82 (14) C23—C22—H22A 109.1
C14—C7—H7A 106.7 C21—C22—H22B 109.1
C8—C7—H7A 106.7 C23—C22—H22B 109.1
C6—C7—H7A 106.7 H22A—C22—H22B 107.8
C13—C8—C9 118.51 (17) C22—C23—H23A 109.5
C13—C8—C7 123.51 (16) C22—C23—H23B 109.5
C9—C8—C7 117.97 (15) H23A—C23—H23B 109.5
C10—C9—C8 121.07 (17) C22—C23—H23C 109.5
C10—C9—H9A 119.5 H23A—C23—H23C 109.5
C8—C9—H9A 119.5 H23B—C23—H23C 109.5
C11—C10—C9 119.79 (17) C17—C24—C25 112.69 (16)
C11—C10—H10A 120.1 C17—C24—H24A 109.1
C9—C10—H10A 120.1 C25—C24—H24A 109.1
C10—C11—C12 120.03 (18) C17—C24—H24B 109.1
C10—C11—H11A 120.0 C25—C24—H24B 109.1
C12—C11—H11A 120.0 H24A—C24—H24B 107.8
C11—C12—C13 120.37 (18) C24—C25—H25A 109.5
C11—C12—H12A 119.8 C24—C25—H25B 109.5
C13—C12—H12A 119.8 H25A—C25—H25B 109.5
C12—C13—C8 120.23 (17) C24—C25—H25C 109.5
C12—C13—H13A 119.9 H25A—C25—H25C 109.5
C8—C13—H13A 119.9 H25B—C25—H25C 109.5
C6—C1—C2—C3 0.1 (3) C6—C7—C14—O1 −54.8 (2)
C1—C2—C3—C4 1.2 (3) C8—C7—C14—N1 −104.38 (17)
C2—C3—C4—C5 −1.0 (3) C6—C7—C14—N1 126.15 (16)
C3—C4—C5—C6 −0.4 (3) C16—N2—C15—N1 176.91 (16)
C4—C5—C6—C1 1.7 (3) C16—N2—C15—S1 −3.3 (3)
C4—C5—C6—C7 −176.24 (16) C14—N1—C15—N2 3.8 (3)
C2—C1—C6—C5 −1.6 (3) C14—N1—C15—S1 −176.01 (15)
C2—C1—C6—C7 176.50 (16) C15—N2—C16—C17 104.9 (2)
C5—C6—C7—C14 96.32 (19) C15—N2—C16—C21 −77.9 (2)
C1—C6—C7—C14 −81.68 (18) C21—C16—C17—C18 0.7 (3)
C5—C6—C7—C8 −29.2 (2) N2—C16—C17—C18 177.83 (15)
C1—C6—C7—C8 152.83 (16) C21—C16—C17—C24 179.14 (16)
C14—C7—C8—C13 −49.6 (2) N2—C16—C17—C24 −3.8 (2)
C6—C7—C8—C13 75.8 (2) C16—C17—C18—C19 0.4 (3)
C14—C7—C8—C9 129.11 (16) C24—C17—C18—C19 −177.99 (17)
C6—C7—C8—C9 −105.49 (18) C17—C18—C19—C20 −0.8 (3)
C13—C8—C9—C10 −0.5 (3) C18—C19—C20—C21 0.0 (3)
C7—C8—C9—C10 −179.22 (15) C19—C20—C21—C16 1.1 (3)
C8—C9—C10—C11 0.2 (3) C19—C20—C21—C22 −176.21 (17)
C9—C10—C11—C12 0.0 (3) C17—C16—C21—C20 −1.5 (3)
C10—C11—C12—C13 0.2 (3) N2—C16—C21—C20 −178.60 (15)
C11—C12—C13—C8 −0.5 (3) C17—C16—C21—C22 175.75 (16)
C9—C8—C13—C12 0.6 (3) N2—C16—C21—C22 −1.3 (2)
C7—C8—C13—C12 179.27 (16) C20—C21—C22—C23 99.3 (2)
C15—N1—C14—O1 −2.0 (3) C16—C21—C22—C23 −77.9 (2)
C15—N1—C14—C7 177.14 (16) C18—C17—C24—C25 90.5 (2)
C8—C7—C14—O1 74.7 (2) C16—C17—C24—C25 −87.9 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1 0.86 (2) 1.96 (2) 2.6702 (19) 140 (2)
N1—H1N1···S1i 0.85 (2) 2.59 (2) 3.4225 (16) 167.4 (18)
C7—H7A···S1i 1.00 2.64 3.6172 (17) 165
C10—H10A···Cg1ii 0.95 2.56 3.3859 (19) 146

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7080).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Yusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012b). Acta Cryst. E68, o2670. [DOI] [PMC free article] [PubMed]
  7. Yusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o982. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013354/hb7080sup1.cif

e-69-0o967-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013354/hb7080Isup2.hkl

e-69-0o967-Isup2.hkl (184.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013354/hb7080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES