Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 25;69(Pt 6):o976. doi: 10.1107/S1600536813013743

1,3,5-Tris(4-bromo­phen­yl)-1,3,5-triazin­ane di­chloro­methane monosolvate

Mahmoud Chebbah a,b, Ahcene Bouchemma a,b, Sofiane Bouacida c,b,*, Leila Lefrada a,b, Mustapha Bouhenguel a,b
PMCID: PMC3685111  PMID: 23795130

Abstract

In the main mol­ecule of the title compound, C21H18Br3N3·CH2Cl2, the triazinane ring adopts a chair conformation with three 4-brom­ophenyl substituents, two in diaxial positions and the third in an equatorial arrangement (eaa). The torsion angles around the N—C bonds in the triazinane ring are in the range 55.6 (5)–60.1 (5)°. The structure can be described as being built up of alternating layers along the b axis with the CH2Cl2 solvent mol­ecules sandwiched between these layers. No classical hydrogen-bonding inter­actions are observed in the crystal structure.

Related literature  

For the conformations of 1,3,5-triaryl derivatives of 1,3,5-tri­aza­cyclo­hexane, see: Wellington & Tollens (1885); Bouchemma et al. (1988); Adam et al. (1993); Gilardi et al. (2003). graphic file with name e-69-0o976-scheme1.jpg

Experimental  

Crystal data  

  • C21H18Br3N3·CH2Cl2

  • M r = 637.04

  • Triclinic, Inline graphic

  • a = 6.0588 (2) Å

  • b = 14.3762 (6) Å

  • c = 15.1617 (6) Å

  • α = 65.323 (3)°

  • β = 89.759 (2)°

  • γ = 80.259 (2)°

  • V = 1179.46 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 295 K

  • 0.24 × 0.24 × 0.08 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.274, T max = 0.467

  • 13332 measured reflections

  • 5637 independent reflections

  • 3505 reflections with I > 2σ(I)

  • R int = 0.078

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.145

  • S = 1.09

  • 5637 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.96 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013743/bq2386sup1.cif

e-69-0o976-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013743/bq2386Isup2.hkl

e-69-0o976-Isup2.hkl (270.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013743/bq2386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the LCATM laboratory, Université Oum El Bouaghi, Algeria. Thanks are due to MESRS and ATRST (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et l’Agence Thématique de Recherche en Sciences et Technologie - Algérie) for financial support via the PNR programme.

supplementary crystallographic information

Comment

A variety of chair, twist-boat and boat conformations can be considered for 1,3,5-triazacyclohexanes with a pyramidal arrangement of bonds at the N atoms. Four types of chair conformation. eee, eea, eaa, and aaa; where e is equatorial and a is axial, are possible and each of these conformations results in axial interactions involving substituents or lone pair of electrons on the N atoms. X-ray investigation of 1,3,5-triazacylohexane of 1,3,5-trialkyl and 1,3,5-triarylderivatives of 1,3,5-triazacyclohexane have consistently found the expected chair conformation with pyramidal arrangement of bonds at N atoms (Wellington & Tollens, 1885; Bouchemma et al., 1988; Adam et al., 1993; Gilardi et al., 2003). In the course of our studies in similar compounds we report here a conformation and crystal structure a new derivate of l,3,5-triazacylohexane, it is the product of a condensation reaction between 4-bromoaniline and formaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The 1,3,5-tris(p-bromorophenyl)-l,3,5-triazacylohexane, adopts a chair conformation with two p-bromophenyl substituents situated in axial positions and a third in equatorial agreement (eaa). The structure can be described as alternating layers parallel to (010)planes, along the b axis and the dichloromethane solvent molecules are sandwiched between these layers (Fig.2). The packing of (I) is stabilized by a Van Der Waals interactions which form a three-dimensional network. No classical hydrogen bond was found.

Experimental

To a solution of p-bromoaniline (25 mmol) in ethanol (10 ml), was added formaldehyde (5 ml, 37% aqueous solution). Stirring was then maintained at 25°C for 12 h. The precipitate thus formed was then collected and washed with diethyl ether. The residue was crystallized from dichloromethane.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with C—H distances of 0.93 Å (Caromatic) and 0.97 Å (Cmethylene) and with Uiso(H) = 1.2 Ueq(Caromatic and Cmethylene).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A diagram of the layered crystal packing in (I), viewed down the a axis.

Crystal data

C21H18Br3N3·CH2Cl2 Z = 2
Mr = 637.04 F(000) = 624
Triclinic, P1 Dx = 1.794 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0588 (2) Å Cell parameters from 13332 reflections
b = 14.3762 (6) Å θ = 1.5–28.5°
c = 15.1617 (6) Å µ = 5.37 mm1
α = 65.323 (3)° T = 295 K
β = 89.759 (2)° Prism, colourless
γ = 80.259 (2)° 0.24 × 0.24 × 0.08 mm
V = 1179.46 (8) Å3

Data collection

Nonius KappaCCD diffractometer 3505 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.078
ω + Phi scan θmax = 28.5°, θmin = 3.4°
Absorption correction: multi-scan (Blessing, 1995) h = −8→7
Tmin = 0.274, Tmax = 0.467 k = −18→19
13332 measured reflections l = −17→19
5637 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5896P] where P = (Fo2 + 2Fc2)/3
5637 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.96 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.18017 (11) 1.56642 (5) 0.60749 (5) 0.0660 (2)
Br2 0.65521 (10) 0.70178 (5) 1.10267 (4) 0.0635 (2)
Br3 0.63610 (10) 0.74321 (5) 0.60175 (5) 0.05954 (19)
C1 0.4134 (9) 1.4501 (4) 0.6332 (4) 0.0435 (12)
C2 0.6030 (10) 1.4347 (4) 0.6909 (4) 0.0534 (14)
H2 0.623 1.4834 0.7142 0.064*
C3 0.7646 (9) 1.3449 (4) 0.7140 (4) 0.0472 (12)
H3 0.894 1.3345 0.7522 0.057*
C4 0.7355 (8) 1.2711 (4) 0.6808 (3) 0.0365 (10)
C5 0.5461 (8) 1.2912 (4) 0.6201 (4) 0.0442 (12)
H5 0.5272 1.2437 0.5952 0.053*
C6 0.3851 (9) 1.3797 (4) 0.5958 (4) 0.0482 (12)
H6 0.2593 1.392 0.5549 0.058*
N7 0.8851 (7) 1.1745 (3) 0.7092 (3) 0.0390 (9)
C8 1.0412 (9) 1.1433 (4) 0.7946 (4) 0.0447 (12)
H8A 1.1555 1.1865 0.7776 0.054*
H8B 0.9603 1.1536 0.8461 0.054*
N9 1.1476 (7) 1.0340 (3) 0.8290 (3) 0.0427 (10)
C10 1.2702 (8) 1.0189 (4) 0.7518 (4) 0.0441 (12)
H10A 1.3363 0.9458 0.7741 0.053*
H10B 1.3913 1.0582 0.7372 0.053*
N11 1.1234 (7) 1.0525 (3) 0.6625 (3) 0.0425 (10)
C12 1.0132 (9) 1.1595 (4) 0.6313 (4) 0.0442 (12)
H12A 0.9119 1.1797 0.5744 0.053*
H12B 1.1247 1.2041 0.6131 0.053*
C13 1.0220 (8) 0.9572 (4) 0.8855 (3) 0.0395 (11)
C14 0.8000 (8) 0.9826 (4) 0.9047 (4) 0.0439 (12)
H14 0.7244 1.0513 0.8752 0.053*
C15 0.6918 (8) 0.9057 (4) 0.9678 (4) 0.0471 (12)
H15 0.5443 0.9231 0.9808 0.057*
C16 0.7999 (8) 0.8052 (4) 1.0105 (4) 0.0445 (12)
C17 1.0182 (9) 0.7775 (4) 0.9902 (4) 0.0514 (13)
H17 1.0903 0.7082 1.0176 0.062*
C18 1.1266 (8) 0.8542 (4) 0.9287 (4) 0.0481 (13)
H18 1.2741 0.8361 0.916 0.058*
C19 1.0037 (8) 0.9794 (4) 0.6553 (3) 0.0402 (11)
C20 1.1126 (9) 0.8785 (4) 0.6758 (4) 0.0529 (14)
H20 1.2624 0.8579 0.6996 0.064*
C21 1.0056 (9) 0.8089 (4) 0.6619 (4) 0.0548 (14)
H21 1.0819 0.7418 0.6767 0.066*
C22 0.7831 (8) 0.8385 (4) 0.6256 (4) 0.0440 (12)
C23 0.6693 (9) 0.9354 (4) 0.6074 (4) 0.0491 (13)
H23 0.5183 0.9541 0.5854 0.059*
C24 0.7774 (8) 1.0066 (4) 0.6214 (4) 0.0447 (12)
H24 0.6984 1.0729 0.6081 0.054*
Cl11 0.4359 (4) 0.6198 (3) 0.8705 (2) 0.1647 (16)
Cl12 0.8927 (4) 0.5297 (2) 0.86456 (17) 0.1056 (7)
C101 0.7167 (16) 0.6197 (8) 0.8929 (7) 0.118 (3)
H10C 0.749 0.6886 0.8545 0.142*
H10D 0.7454 0.6037 0.9611 0.142*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0620 (4) 0.0496 (4) 0.0824 (5) 0.0053 (3) 0.0044 (3) −0.0299 (3)
Br2 0.0582 (4) 0.0680 (4) 0.0602 (4) −0.0218 (3) 0.0080 (3) −0.0194 (3)
Br3 0.0568 (4) 0.0626 (4) 0.0712 (4) −0.0116 (3) −0.0024 (3) −0.0396 (3)
C1 0.045 (3) 0.035 (3) 0.049 (3) −0.006 (2) 0.011 (2) −0.018 (2)
C2 0.060 (4) 0.042 (3) 0.064 (4) −0.011 (3) 0.001 (3) −0.028 (3)
C3 0.045 (3) 0.039 (3) 0.058 (3) −0.011 (2) −0.002 (2) −0.020 (2)
C4 0.038 (2) 0.032 (2) 0.039 (3) −0.010 (2) 0.0048 (19) −0.014 (2)
C5 0.045 (3) 0.044 (3) 0.050 (3) −0.008 (2) −0.002 (2) −0.026 (2)
C6 0.043 (3) 0.048 (3) 0.054 (3) −0.009 (2) −0.004 (2) −0.022 (3)
N7 0.041 (2) 0.039 (2) 0.042 (2) −0.0051 (18) 0.0024 (17) −0.0227 (18)
C8 0.045 (3) 0.044 (3) 0.046 (3) −0.007 (2) −0.005 (2) −0.021 (2)
N9 0.035 (2) 0.048 (3) 0.045 (2) −0.0025 (19) −0.0031 (17) −0.0218 (19)
C10 0.030 (2) 0.051 (3) 0.054 (3) −0.009 (2) 0.005 (2) −0.024 (2)
N11 0.037 (2) 0.047 (3) 0.045 (2) −0.0044 (19) 0.0068 (17) −0.023 (2)
C12 0.042 (3) 0.044 (3) 0.047 (3) −0.011 (2) 0.011 (2) −0.018 (2)
C13 0.032 (2) 0.048 (3) 0.039 (3) −0.005 (2) −0.0040 (19) −0.019 (2)
C14 0.035 (3) 0.049 (3) 0.049 (3) −0.001 (2) 0.002 (2) −0.024 (2)
C15 0.035 (3) 0.057 (3) 0.052 (3) −0.004 (2) 0.001 (2) −0.027 (3)
C16 0.041 (3) 0.053 (3) 0.043 (3) −0.012 (2) 0.001 (2) −0.022 (2)
C17 0.044 (3) 0.048 (3) 0.055 (3) −0.003 (2) 0.000 (2) −0.017 (3)
C18 0.030 (3) 0.048 (3) 0.059 (3) 0.003 (2) −0.001 (2) −0.019 (3)
C19 0.037 (3) 0.044 (3) 0.039 (3) −0.004 (2) 0.007 (2) −0.018 (2)
C20 0.038 (3) 0.052 (3) 0.070 (4) 0.001 (2) −0.004 (2) −0.030 (3)
C21 0.044 (3) 0.044 (3) 0.075 (4) 0.007 (2) −0.005 (3) −0.029 (3)
C22 0.045 (3) 0.048 (3) 0.043 (3) −0.008 (2) 0.000 (2) −0.022 (2)
C23 0.040 (3) 0.051 (3) 0.053 (3) −0.003 (2) −0.006 (2) −0.020 (3)
C24 0.036 (3) 0.042 (3) 0.053 (3) 0.004 (2) −0.002 (2) −0.020 (2)
Cl11 0.0865 (17) 0.237 (4) 0.112 (2) 0.038 (2) −0.0031 (14) −0.043 (2)
Cl12 0.0865 (14) 0.1185 (18) 0.1040 (16) 0.0149 (13) −0.0080 (11) −0.0519 (13)
C101 0.115 (8) 0.137 (8) 0.117 (7) −0.001 (6) −0.005 (6) −0.076 (7)

Geometric parameters (Å, º)

Br1—C1 1.899 (5) C12—H12A 0.97
Br2—C16 1.904 (5) C12—H12B 0.97
Br3—C22 1.905 (5) C13—C18 1.378 (7)
C1—C2 1.376 (8) C13—C14 1.395 (7)
C1—C6 1.383 (7) C14—C15 1.388 (7)
C2—C3 1.394 (7) C14—H14 0.93
C2—H2 0.93 C15—C16 1.355 (7)
C3—C4 1.386 (7) C15—H15 0.93
C3—H3 0.93 C16—C17 1.387 (7)
C4—C5 1.386 (7) C17—C18 1.378 (7)
C4—N7 1.419 (6) C17—H17 0.93
C5—C6 1.377 (7) C18—H18 0.93
C5—H5 0.93 C19—C20 1.392 (7)
C6—H6 0.93 C19—C24 1.398 (7)
N7—C8 1.468 (6) C20—C21 1.364 (8)
N7—C12 1.480 (6) C20—H20 0.93
C8—N9 1.460 (6) C21—C22 1.385 (7)
C8—H8A 0.97 C21—H21 0.93
C8—H8B 0.97 C22—C23 1.359 (7)
N9—C13 1.422 (6) C23—C24 1.390 (7)
N9—C10 1.456 (6) C23—H23 0.93
C10—N11 1.475 (6) C24—H24 0.93
C10—H10A 0.97 Cl11—C101 1.736 (10)
C10—H10B 0.97 Cl12—C101 1.729 (9)
N11—C19 1.413 (7) C101—H10C 0.97
N11—C12 1.444 (6) C101—H10D 0.97
C2—C1—C6 120.9 (5) H12A—C12—H12B 108
C2—C1—Br1 120.3 (4) C18—C13—C14 118.3 (5)
C6—C1—Br1 118.8 (4) C18—C13—N9 119.2 (4)
C1—C2—C3 119.1 (5) C14—C13—N9 122.4 (4)
C1—C2—H2 120.5 C15—C14—C13 120.1 (5)
C3—C2—H2 120.5 C15—C14—H14 119.9
C4—C3—C2 121.1 (5) C13—C14—H14 119.9
C4—C3—H3 119.5 C16—C15—C14 120.4 (5)
C2—C3—H3 119.5 C16—C15—H15 119.8
C3—C4—C5 118.1 (5) C14—C15—H15 119.8
C3—C4—N7 123.2 (4) C15—C16—C17 120.5 (5)
C5—C4—N7 118.7 (4) C15—C16—Br2 119.9 (4)
C6—C5—C4 121.8 (5) C17—C16—Br2 119.6 (4)
C6—C5—H5 119.1 C18—C17—C16 119.0 (5)
C4—C5—H5 119.1 C18—C17—H17 120.5
C5—C6—C1 119.0 (5) C16—C17—H17 120.5
C5—C6—H6 120.5 C13—C18—C17 121.6 (5)
C1—C6—H6 120.5 C13—C18—H18 119.2
C4—N7—C8 116.2 (4) C17—C18—H18 119.2
C4—N7—C12 116.0 (4) C20—C19—C24 117.3 (5)
C8—N7—C12 108.5 (4) C20—C19—N11 120.6 (4)
N9—C8—N7 110.4 (4) C24—C19—N11 122.0 (5)
N9—C8—H8A 109.6 C21—C20—C19 121.8 (5)
N7—C8—H8A 109.6 C21—C20—H20 119.1
N9—C8—H8B 109.6 C19—C20—H20 119.1
N7—C8—H8B 109.6 C20—C21—C22 119.9 (5)
H8A—C8—H8B 108.1 C20—C21—H21 120.1
C13—N9—C10 117.9 (4) C22—C21—H21 120.1
C13—N9—C8 117.9 (4) C23—C22—C21 120.0 (5)
C10—N9—C8 109.5 (4) C23—C22—Br3 120.0 (4)
N9—C10—N11 111.8 (4) C21—C22—Br3 120.0 (4)
N9—C10—H10A 109.2 C22—C23—C24 120.4 (5)
N11—C10—H10A 109.2 C22—C23—H23 119.8
N9—C10—H10B 109.3 C24—C23—H23 119.8
N11—C10—H10B 109.3 C23—C24—C19 120.6 (5)
H10A—C10—H10B 107.9 C23—C24—H24 119.7
C19—N11—C12 119.7 (4) C19—C24—H24 119.7
C19—N11—C10 117.5 (4) Cl12—C101—Cl11 111.7 (6)
C12—N11—C10 110.1 (4) Cl12—C101—H10C 109.3
N11—C12—N7 111.3 (4) Cl11—C101—H10C 109.3
N11—C12—H12A 109.4 Cl12—C101—H10D 109.3
N7—C12—H12A 109.4 Cl11—C101—H10D 109.3
N11—C12—H12B 109.4 H10C—C101—H10D 107.9
N7—C12—H12B 109.4
C6—C1—C2—C3 −1.9 (8) C18—C13—C14—C15 1.6 (7)
Br1—C1—C2—C3 175.7 (4) N9—C13—C14—C15 −173.9 (5)
C1—C2—C3—C4 −0.8 (8) C13—C14—C15—C16 −0.6 (8)
C2—C3—C4—C5 3.0 (8) C14—C15—C16—C17 −1.4 (8)
C2—C3—C4—N7 −174.3 (5) C14—C15—C16—Br2 176.3 (4)
C3—C4—C5—C6 −2.5 (8) C15—C16—C17—C18 2.4 (8)
N7—C4—C5—C6 174.9 (5) Br2—C16—C17—C18 −175.4 (4)
C4—C5—C6—C1 −0.1 (8) C14—C13—C18—C17 −0.6 (8)
C2—C1—C6—C5 2.4 (8) N9—C13—C18—C17 175.0 (5)
Br1—C1—C6—C5 −175.2 (4) C16—C17—C18—C13 −1.3 (9)
C3—C4—N7—C8 15.3 (7) C12—N11—C19—C20 173.6 (4)
C5—C4—N7—C8 −162.0 (4) C10—N11—C19—C20 −48.4 (6)
C3—C4—N7—C12 −114.0 (5) C12—N11—C19—C24 −2.1 (7)
C5—C4—N7—C12 68.7 (6) C10—N11—C19—C24 135.9 (5)
C4—N7—C8—N9 167.0 (4) C24—C19—C20—C21 1.2 (8)
C12—N7—C8—N9 −60.1 (5) N11—C19—C20—C21 −174.6 (5)
N7—C8—N9—C13 −78.9 (5) C19—C20—C21—C22 0.6 (9)
C13—N9—C10—N11 81.6 (5) C20—C21—C22—C23 −2.5 (9)
C8—N9—C10—N11 −56.9 (5) C20—C21—C22—Br3 177.8 (4)
N9—C10—N11—C19 −86.2 (5) C21—C22—C23—C24 2.5 (8)
C19—N11—C12—N7 84.4 (5) Br3—C22—C23—C24 −177.8 (4)
C10—N11—C12—N7 −56.4 (5) C22—C23—C24—C19 −0.6 (8)
C4—N7—C12—N11 −168.1 (4) C20—C19—C24—C23 −1.2 (7)
C10—N9—C13—C18 52.7 (6) N11—C19—C24—C23 174.6 (4)
C8—N9—C13—C18 −172.3 (4) N7—C8—N9—C10 59.6 (5)
C10—N9—C13—C14 −131.9 (5) C8—N7—C12—N11 58.9 (5)
C8—N9—C13—C14 3.1 (7) N9—C10—N11—C12 55.6 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2386).

References

  1. Adam, D., McCabe, P. H., Sim, G. A. & Bouchemma, A. (1993). Acta Cryst. C49, 837–841.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bouchemma, A., McCabe, P. H. & Sim, G. A. (1988). Acta Cryst. C44, 1469–1472.
  4. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187–o1188.
  8. Nonius (200). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wellington, C. & Tollens, T. (1885). Chem. Ber. 18, 3298–3311.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813013743/bq2386sup1.cif

e-69-0o976-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813013743/bq2386Isup2.hkl

e-69-0o976-Isup2.hkl (270.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813013743/bq2386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES