Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 31;69(Pt 6):o979. doi: 10.1107/S1600536813014001

5-Benz­yloxy-3-methyl-1-tosyl-1H-indole

Gustavo Pozza Silveira a,*, Allen G Oliver b, Bruce C Noll c
PMCID: PMC3685113  PMID: 23795132

Abstract

The title compound, C23H21NO3S, represents one of the few examples of a 5-substituted indole with a toluene­sulfonyl group bonded to the N atom. The benzyl group adopts a synclinal geometry with respect to the indole ring [dihedral angle = 59.95 (4)°], while the tolyl ring is oriented close to perpendicular to the indole ring, making a dihedral angle of 81.85 (3)°. The indole N atom exhibits a slight pyramidalization.

Related literature  

For background to physostigmine and related marine natural products, see: Marino et al. (1989, 1992). For recent, related structural and synthetic studies, see: Pozza Silveira et al. (2012); Silveira & Marino (2013). For related compounds, see: Xiong et al. (2001); Witulski et al. (2000). For reference structural data see: Allen et al. (1995).graphic file with name e-69-0o979-scheme1.jpg

Experimental  

Crystal data  

  • C23H21NO3S

  • M r = 391.47

  • Monoclinic, Inline graphic

  • a = 8.317 (3) Å

  • b = 15.601 (6) Å

  • c = 14.752 (5) Å

  • β = 90.884 (11)°

  • V = 1914.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.39 × 0.33 × 0.15 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.636, T max = 0.746

  • 30660 measured reflections

  • 6415 independent reflections

  • 5550 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.04

  • 6415 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014001/kj2226sup1.cif

e-69-0o979-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014001/kj2226Isup2.hkl

e-69-0o979-Isup2.hkl (351.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014001/kj2226Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Notre Dame for its generous support of this program.

supplementary crystallographic information

Comment

Substituted indoles serve as unique precursors for medicinally important physostigmine alkaloids, which are anticholinesterases and miotics. This alkaloid skeleton has been found in marine alkaloids from Broyoza Flustra foliacea in the flustramines (Marino et al., 1989) The literature presents a great number of enantiocontrolled syntheses for the natural and unnatural physostigmine (Marino et al., 1992) Our interest in physostigmine emanated from our recent asymmetric synthesis of naphthyl lactams (Silveira & Marino, 2013) using chiral vinyl sulfilimines (Pozza Silveira et al., 2012). Herein we report 5-(benzyloxy)-3-methyl-1-tosyl-1H-indole as a potential physostigmine precursor.

The title compound, C23H21NO3S, exhibits no unusual structural features and represents one of the few examples of an indole with a toluenesulfonyl bonded to the nitrogen and an oxygen bridging moiety bonded in the 5-position on the indole ring. The two other examples are 5-cyano-2-methoxy-4-trifluoromethyl-6-[3'-(N-toluenesulfonyl-5'-µethoxyindolyl)]pyridine (Xiong et al., 2001) and 1-(4-methylphenyl)sulfonyl-3-((E)-2-(benzyl((4-methylphenyl)sulfonyl)αmino)ethenyl)-5-methoxy-1H-indole (Witulski et al., 2000). In both of these examples the 5-position is occupied by a methoxy group.

Bond distances and angles are within normal, acceptable ranges (Allen et al. 1995). The benzyl moiety adopts a syn-clinal geometry with respect to the indole ring (interplanar angle = 59.95 (4)°), while the tolyl ring is oriented close to perpendicular to the indole ring (interplanar angle = 81.85 (3)°). The complement of this angle, 108.15°, is close to the N1—S1—C16 angle (104.19 (5)°). The difference is a consequence of a slight pyramidalization of the indolic nitrogen.

Experimental

To a stirred solution of dimsylsodium [prepared from 110 mg (2.75 mmol) of NaH 60% dispersion in mineral oil and dimethylsulfoxide dry (0.58 ml) at 338 to 343 K until H2 is no longer evolved] was added a solution of 5-benzyloxy-3-methylindole (325 mg, 1.37 mmol) in dry THF (0.9 ml) under ice cooling. After stirring at room temperature for 1 h a solution of 4-methylbenzenesulfonyl chloride (225 mg, 1.18 mmol) in THF (0.9 ml) was added to this mixture at 273 K. After being stirred at room temperature for 16 h, the reaction product was poured into water and extracted with ethyl acetate. The extract was washed with water, dried over Na2SO4, and evaporated. The remaining residue was recrystallized from ethyl acetate/hexanes to give 482 mg of the desired product as white needle crystals (90%): mp 402 to 403 K. A suitably sized, block-like crystal was cut from a larger, columnar crystal for the diffraction study.

Refinement

Hydrogen atoms were included in geometrically calculated positions. C—H distances were constrained to 0.95 Å for aromatic and 0.98 - 0.99 Å for aliphatic hydrogen atoms. Methyl hydrogen atoms were refined with thermal parameters restrained to UisoH = 1.5 × UeqC and all other hydrogen atoms = 1.2 × UeqC of the carbon to which they are bonded.

Figures

Fig. 1.

Fig. 1.

Labelling scheme for the title compound. Displacement ellipsoids depicted at 50% probability level. The labeling scheme follows the convention for indoles.

Crystal data

C23H21NO3S Dx = 1.358 Mg m3
Mr = 391.47 Melting point: 402 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.317 (3) Å Cell parameters from 9980 reflections
b = 15.601 (6) Å θ = 2.6–31.6°
c = 14.752 (5) Å µ = 0.19 mm1
β = 90.884 (11)° T = 100 K
V = 1914.1 (12) Å3 Block, colourless
Z = 4 0.39 × 0.33 × 0.15 mm
F(000) = 824

Data collection

Bruker APEXII diffractometer 6415 independent reflections
Radiation source: fine-focus sealed tube 5550 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 8.33 pixels mm-1 θmax = 31.6°, θmin = 1.9°
combination of ω and φ–scans h = −10→12
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −22→22
Tmin = 0.636, Tmax = 0.746 l = −21→21
30660 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.775P] where P = (Fo2 + 2Fc2)/3
6415 reflections (Δ/σ)max = 0.001
255 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.84082 (10) 0.26302 (5) 0.60391 (6) 0.01478 (15)
O1 0.35145 (9) 0.40007 (6) 0.39442 (5) 0.02043 (16)
S1 0.98068 (3) 0.19050 (2) 0.58368 (2) 0.01438 (6)
O2 1.08199 (9) 0.19022 (5) 0.66274 (5) 0.01998 (15)
C2 0.77142 (12) 0.27143 (6) 0.69017 (6) 0.01592 (17)
H2 0.8203 0.2534 0.7456 0.019*
O3 1.04493 (9) 0.21088 (5) 0.49733 (5) 0.01909 (15)
C3 0.62522 (12) 0.30883 (6) 0.68241 (6) 0.01519 (17)
C3' 0.59545 (12) 0.32359 (6) 0.58690 (6) 0.01410 (17)
C4 0.46627 (12) 0.36208 (7) 0.54150 (6) 0.01652 (18)
H4 0.3777 0.3846 0.5737 0.020*
C5 0.47154 (12) 0.36630 (7) 0.44789 (6) 0.01665 (18)
C6 0.60430 (13) 0.33495 (7) 0.40057 (7) 0.01818 (19)
H6 0.6050 0.3390 0.3363 0.022*
C7 0.73415 (12) 0.29828 (7) 0.44561 (7) 0.01689 (18)
H7 0.8246 0.2777 0.4136 0.020*
C7' 0.72720 (12) 0.29276 (6) 0.53938 (6) 0.01406 (16)
C8 0.51260 (13) 0.33196 (7) 0.75577 (7) 0.0202 (2)
H8A 0.5623 0.3187 0.8148 0.030*
H8B 0.4129 0.2991 0.7484 0.030*
H8C 0.4884 0.3934 0.7525 0.030*
C9 0.21302 (12) 0.42980 (7) 0.44164 (7) 0.01792 (18)
H9A 0.2426 0.4792 0.4806 0.022*
H9B 0.1713 0.3836 0.4808 0.022*
C10 0.08711 (11) 0.45595 (6) 0.37411 (6) 0.01452 (17)
C11 0.02533 (13) 0.53835 (7) 0.37424 (7) 0.01724 (18)
H11 0.0674 0.5795 0.4157 0.021*
C12 −0.09749 (14) 0.56142 (7) 0.31438 (7) 0.0217 (2)
H12 −0.1390 0.6181 0.3148 0.026*
C13 −0.15915 (13) 0.50175 (8) 0.25425 (7) 0.0240 (2)
H13 −0.2447 0.5171 0.2140 0.029*
C14 −0.09673 (13) 0.41950 (8) 0.25233 (7) 0.0222 (2)
H14 −0.1380 0.3788 0.2101 0.027*
C15 0.02576 (13) 0.39676 (7) 0.31194 (7) 0.01826 (18)
H15 0.0685 0.3403 0.3105 0.022*
C16 0.87513 (12) 0.09408 (6) 0.57724 (6) 0.01472 (17)
C17 0.82732 (14) 0.06170 (7) 0.49366 (7) 0.0208 (2)
H17 0.8571 0.0897 0.4392 0.025*
C18 0.73530 (15) −0.01231 (7) 0.49093 (7) 0.0232 (2)
H18 0.7026 −0.0352 0.4339 0.028*
C19 0.68993 (13) −0.05376 (7) 0.56976 (7) 0.01902 (19)
C20 0.73877 (14) −0.01942 (7) 0.65257 (7) 0.0206 (2)
H20 0.7076 −0.0469 0.7070 0.025*
C21 0.83179 (13) 0.05392 (7) 0.65732 (7) 0.01885 (19)
H21 0.8655 0.0765 0.7143 0.023*
C22 0.59305 (15) −0.13461 (8) 0.56597 (9) 0.0263 (2)
H22A 0.5294 −0.1360 0.5095 0.040*
H22B 0.5209 −0.1366 0.6178 0.040*
H22C 0.6654 −0.1842 0.5681 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0144 (4) 0.0164 (4) 0.0135 (3) 0.0039 (3) −0.0007 (3) 0.0004 (3)
O1 0.0149 (3) 0.0329 (4) 0.0135 (3) 0.0072 (3) −0.0001 (3) 0.0038 (3)
S1 0.01210 (11) 0.01661 (11) 0.01444 (11) 0.00244 (8) 0.00002 (8) 0.00062 (7)
O2 0.0160 (3) 0.0249 (4) 0.0189 (3) 0.0024 (3) −0.0046 (3) 0.0003 (3)
C2 0.0187 (4) 0.0165 (4) 0.0125 (4) 0.0018 (3) −0.0011 (3) 0.0009 (3)
O3 0.0167 (3) 0.0226 (3) 0.0180 (3) 0.0019 (3) 0.0042 (3) 0.0027 (3)
C3 0.0174 (4) 0.0165 (4) 0.0116 (4) 0.0017 (3) −0.0001 (3) 0.0003 (3)
C3' 0.0146 (4) 0.0158 (4) 0.0119 (4) 0.0009 (3) 0.0003 (3) 0.0002 (3)
C4 0.0149 (4) 0.0211 (4) 0.0135 (4) 0.0037 (3) 0.0005 (3) 0.0011 (3)
C5 0.0148 (4) 0.0214 (4) 0.0137 (4) 0.0021 (3) −0.0011 (3) 0.0027 (3)
C6 0.0172 (4) 0.0249 (5) 0.0124 (4) 0.0024 (4) 0.0010 (3) 0.0021 (3)
C7 0.0154 (4) 0.0219 (4) 0.0135 (4) 0.0027 (3) 0.0021 (3) 0.0011 (3)
C7' 0.0139 (4) 0.0152 (4) 0.0130 (4) 0.0011 (3) −0.0007 (3) 0.0010 (3)
C8 0.0221 (5) 0.0251 (5) 0.0136 (4) 0.0054 (4) 0.0027 (3) −0.0001 (3)
C9 0.0151 (4) 0.0245 (5) 0.0142 (4) 0.0038 (4) 0.0000 (3) 0.0008 (3)
C10 0.0123 (4) 0.0173 (4) 0.0140 (4) 0.0002 (3) 0.0002 (3) 0.0024 (3)
C11 0.0183 (5) 0.0173 (4) 0.0161 (4) 0.0017 (3) 0.0008 (3) −0.0004 (3)
C12 0.0221 (5) 0.0246 (5) 0.0186 (4) 0.0094 (4) 0.0021 (4) 0.0036 (4)
C13 0.0169 (5) 0.0378 (6) 0.0171 (4) 0.0061 (4) −0.0024 (4) 0.0019 (4)
C14 0.0182 (5) 0.0293 (5) 0.0191 (4) −0.0035 (4) −0.0025 (4) −0.0031 (4)
C15 0.0181 (5) 0.0166 (4) 0.0201 (4) −0.0013 (3) −0.0003 (3) 0.0003 (3)
C16 0.0146 (4) 0.0155 (4) 0.0140 (4) 0.0031 (3) 0.0007 (3) 0.0000 (3)
C17 0.0269 (5) 0.0216 (5) 0.0140 (4) −0.0009 (4) −0.0005 (4) 0.0006 (3)
C18 0.0292 (6) 0.0226 (5) 0.0178 (4) −0.0022 (4) −0.0025 (4) −0.0025 (4)
C19 0.0169 (4) 0.0171 (4) 0.0231 (5) 0.0021 (3) 0.0019 (4) −0.0016 (3)
C20 0.0231 (5) 0.0202 (4) 0.0187 (4) 0.0007 (4) 0.0054 (4) 0.0007 (4)
C21 0.0228 (5) 0.0196 (4) 0.0142 (4) 0.0009 (4) 0.0023 (3) −0.0007 (3)
C22 0.0227 (5) 0.0219 (5) 0.0344 (6) −0.0032 (4) 0.0025 (4) −0.0030 (4)

Geometric parameters (Å, º)

N1—C7' 1.4096 (13) C17—C18 1.3855 (16)
N1—C2 1.4116 (13) C18—C19 1.3881 (16)
N1—S1 1.6531 (9) C19—C20 1.3889 (16)
O1—C5 1.3687 (12) C19—C22 1.4973 (16)
O1—C9 1.4320 (13) C20—C21 1.3824 (16)
S1—O3 1.4249 (9) C2—H2 0.9500
S1—O2 1.4284 (9) C4—H4 0.9500
S1—C16 1.7436 (11) C6—H6 0.9500
C2—C3 1.3521 (14) C7—H7 0.9500
C3—C3' 1.4454 (14) C8—H8A 0.9800
C3—C8 1.4866 (14) C8—H8B 0.9800
C3'—C4 1.3933 (14) C8—H8C 0.9800
C3'—C7' 1.3955 (13) C9—H9A 0.9900
C4—C5 1.3839 (14) C9—H9B 0.9900
C5—C6 1.4035 (14) C11—H11 0.9500
C6—C7 1.3831 (14) C12—H12 0.9500
C7—C7' 1.3880 (14) C13—H13 0.9500
C9—C10 1.4912 (14) C14—H14 0.9500
C10—C11 1.3844 (14) C15—H15 0.9500
C10—C15 1.3928 (14) C17—H17 0.9500
C11—C12 1.3874 (15) C18—H18 0.9500
C12—C13 1.3793 (17) C20—H20 0.9500
C13—C14 1.3847 (18) C21—H21 0.9500
C14—C15 1.3818 (15) C22—H22A 0.9800
C16—C17 1.3852 (14) C22—H22B 0.9800
C16—C21 1.3897 (14) C22—H22C 0.9800
C7'—N1—C2 107.40 (8) C20—C21—C16 118.84 (10)
C7'—N1—S1 124.73 (7) C3—C2—H2 125.0
C2—N1—S1 121.67 (7) N1—C2—H2 125.0
C5—O1—C9 115.43 (8) C5—C4—H4 121.2
O3—S1—O2 120.40 (5) C3'—C4—H4 121.2
O3—S1—N1 106.46 (5) C7—C6—H6 119.3
O2—S1—N1 105.22 (5) C5—C6—H6 119.3
O3—S1—C16 109.83 (5) C6—C7—H7 121.3
O2—S1—C16 109.39 (5) C7'—C7—H7 121.3
N1—S1—C16 104.19 (5) C3—C8—H8A 109.5
C3—C2—N1 110.09 (8) C3—C8—H8B 109.5
C2—C3—C3' 106.96 (9) H8A—C8—H8B 109.5
C2—C3—C8 128.25 (9) C3—C8—H8C 109.5
C3'—C3—C8 124.79 (9) H8A—C8—H8C 109.5
C4—C3'—C7' 120.85 (9) H8B—C8—H8C 109.5
C4—C3'—C3 131.03 (9) O1—C9—H9A 109.9
C7'—C3'—C3 108.11 (9) C10—C9—H9A 109.9
C5—C4—C3' 117.65 (9) O1—C9—H9B 109.9
O1—C5—C4 124.01 (9) C10—C9—H9B 109.9
O1—C5—C6 114.85 (9) H9A—C9—H9B 108.3
C4—C5—C6 121.14 (9) C10—C11—H11 119.7
C7—C6—C5 121.30 (9) C12—C11—H11 119.7
C6—C7—C7' 117.41 (9) C13—C12—H12 120.1
C7—C7'—C3' 121.62 (9) C11—C12—H12 120.1
C7—C7'—N1 130.97 (9) C12—C13—H13 119.9
C3'—C7'—N1 107.32 (8) C14—C13—H13 119.9
O1—C9—C10 108.98 (8) C15—C14—H14 120.1
C11—C10—C15 118.98 (9) C13—C14—H14 120.1
C11—C10—C9 120.67 (9) C14—C15—H15 119.7
C15—C10—C9 120.32 (9) C10—C15—H15 119.7
C10—C11—C12 120.64 (10) C16—C17—H17 120.6
C13—C12—C11 119.80 (10) C18—C17—H17 120.6
C12—C13—C14 120.18 (10) C17—C18—H18 119.3
C15—C14—C13 119.86 (10) C19—C18—H18 119.3
C14—C15—C10 120.52 (10) C21—C20—H20 119.3
C17—C16—C21 121.18 (10) C19—C20—H20 119.3
C17—C16—S1 120.03 (8) C20—C21—H21 120.6
C21—C16—S1 118.66 (8) C16—C21—H21 120.6
C16—C17—C18 118.73 (10) C19—C22—H22A 109.5
C17—C18—C19 121.41 (10) C19—C22—H22B 109.5
C18—C19—C20 118.53 (10) H22A—C22—H22B 109.5
C18—C19—C22 120.95 (10) C19—C22—H22C 109.5
C20—C19—C22 120.52 (10) H22A—C22—H22C 109.5
C21—C20—C19 121.32 (10) H22B—C22—H22C 109.5
C7'—N1—S1—O3 42.42 (9) S1—N1—C7'—C7 −27.34 (16)
C2—N1—S1—O3 −168.81 (8) C2—N1—C7'—C3' 3.62 (11)
C7'—N1—S1—O2 171.26 (8) S1—N1—C7'—C3' 156.08 (7)
C2—N1—S1—O2 −39.96 (9) C5—O1—C9—C10 −174.12 (9)
C7'—N1—S1—C16 −73.66 (9) O1—C9—C10—C11 −122.47 (10)
C2—N1—S1—C16 75.11 (9) O1—C9—C10—C15 59.84 (12)
C7'—N1—C2—C3 −3.23 (11) C15—C10—C11—C12 0.98 (15)
S1—N1—C2—C3 −156.71 (8) C9—C10—C11—C12 −176.74 (10)
N1—C2—C3—C3' 1.52 (11) C10—C11—C12—C13 0.17 (16)
N1—C2—C3—C8 −178.24 (10) C11—C12—C13—C14 −1.24 (17)
C2—C3—C3'—C4 −178.08 (11) C12—C13—C14—C15 1.14 (17)
C8—C3—C3'—C4 1.69 (18) C13—C14—C15—C10 0.02 (16)
C2—C3—C3'—C7' 0.77 (11) C11—C10—C15—C14 −1.07 (15)
C8—C3—C3'—C7' −179.46 (10) C9—C10—C15—C14 176.66 (10)
C7'—C3'—C4—C5 1.80 (15) O3—S1—C16—C17 −17.23 (10)
C3—C3'—C4—C5 −179.47 (10) O2—S1—C16—C17 −151.44 (9)
C9—O1—C5—C4 −1.70 (15) N1—S1—C16—C17 96.46 (9)
C9—O1—C5—C6 178.08 (9) O3—S1—C16—C21 166.80 (8)
C3'—C4—C5—O1 178.12 (10) O2—S1—C16—C21 32.59 (10)
C3'—C4—C5—C6 −1.65 (16) N1—S1—C16—C21 −79.50 (9)
O1—C5—C6—C7 −179.40 (10) C21—C16—C17—C18 −0.29 (16)
C4—C5—C6—C7 0.38 (17) S1—C16—C17—C18 −176.15 (9)
C5—C6—C7—C7' 0.75 (16) C16—C17—C18—C19 0.40 (17)
C6—C7—C7'—C3' −0.59 (15) C17—C18—C19—C20 0.04 (17)
C6—C7—C7'—N1 −176.76 (10) C17—C18—C19—C22 −178.85 (11)
C4—C3'—C7'—C7 −0.71 (15) C18—C19—C20—C21 −0.61 (17)
C3—C3'—C7'—C7 −179.70 (9) C22—C19—C20—C21 178.29 (10)
C4—C3'—C7'—N1 176.26 (9) C19—C20—C21—C16 0.71 (16)
C3—C3'—C7'—N1 −2.73 (11) C17—C16—C21—C20 −0.25 (16)
C2—N1—C7'—C7 −179.80 (11) S1—C16—C21—C20 175.66 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2226).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685–706. Dordrecht: Kluwer.
  2. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Marino, J. P., Bogdan, S. & Kimura, K. (1992). J. Am. Chem. Soc. 114, 5566–5572.
  4. Marino, J. P., Kim, M.-W. & Lawrence, R. (1989). J. Org. Chem. 54, 1782–1784.
  5. Pozza Silveira, G., Bonfante de Carvallho, C. & Oliver, A. (2012). Acta Cryst. E68, o2048. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  9. Witulski, B., Bushcmann, N. & Bergsträsser, U. (2000). Tetrahedron, 56, 8473–8480.
  10. Xiong, W.-N., Yang, C.-G. & Jiang, B. (2001). Bioorg. Med. Chem. 9, 1773–1780. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014001/kj2226sup1.cif

e-69-0o979-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014001/kj2226Isup2.hkl

e-69-0o979-Isup2.hkl (351.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014001/kj2226Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES