Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 31;69(Pt 6):o990. doi: 10.1107/S1600536813014050

Methyl 2-[(2-chloro­quinolin-3-yl)(hy­droxy)meth­yl]acrylate

T Anuradha a, J Srinivasan b, P R Seshadri a,*, M Bakthadoss b
PMCID: PMC3685122  PMID: 23795141

Abstract

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound, C14H12ClNO3. The mean planes of the methyl ester unit (Cmeth­yl—O—C=O; r.m.s. deviation = 0.051 Å for mol­ecule A and 0.016 Å for mol­ecule B) and the chloro­quilonine ring system (r.m.s. deviation = 0.023 Å for mol­ecule A and 0.014 Å for mol­ecule B) form dihedral angles of 63.5 (1)° in mol­ecule A and 78.1 (1)° in mol­ecule B. The main difference between the two independent mol­ecules is reflected in the (H)O—C—C=C(H2) torsion angle which is −109.7 (2)° in mol­ecule A and 10.6 (2)° in mol­ecule B. An intra­molecular O—H⋯O hydrogen bond is observed in mol­ecule A. In the crystal, mol­ecules A and B are linked into pairs via bifurcated O—H⋯(N,Cl) hydrogen bonds and a weak C—H⋯O hydrogen bond links pairs of mol­ecules into chains along [100].

Related literature  

For the biological activity of quilonine compounds, see: Biavatti et al. (2002); Towers et al. (1981); Shen et al. (1999). For their luminescent properties, see: Montes et al. (2006). For applications of acrylate compounds, see: Bhatia et al. (2007); Sharma (2011). For conformational aspects of methyl esters, see: Dunitz & Schweizer (1982). For resonance effects in acrylates, see: Merlino (1971); Varghese et al. (1986).graphic file with name e-69-0o990-scheme1.jpg

Experimental  

Crystal data  

  • C14H12ClNO3

  • M r = 277.70

  • Triclinic, Inline graphic

  • a = 9.2614 (4) Å

  • b = 11.0309 (4) Å

  • c = 13.8161 (6) Å

  • α = 102.557 (2)°

  • β = 100.646 (2)°

  • γ = 103.704 (2)°

  • V = 1296.29 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • 14402 measured reflections

  • 4466 independent reflections

  • 3767 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.093

  • S = 1.03

  • 4466 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014050/lh5607sup1.cif

e-69-0o990-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014050/lh5607Isup2.hkl

e-69-0o990-Isup2.hkl (214.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014050/lh5607Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2A 0.82 2.24 2.8372 (19) 130
O1B—H1B⋯Cl1A i 0.82 2.79 3.5040 (12) 147
O1B—H1B⋯N1A i 0.82 2.16 2.8609 (17) 144
C5A—H5A⋯O1B ii 0.93 2.56 3.451 (2) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for the data collection.

supplementary crystallographic information

Comment

The quinoline ring is found in compounds with antifungal (Biavatti et al., 2002), antibacterial (Towers et al., 1981) and anticancer (Shen et al., 1999) properties. Quinoline derivatives have been used for their luminescent properties as organic light-emitting diode (OLED) materials (Montes et al., 2006). Methyl acrylate is an ingredient used in many fragrances and decorative cosmetics (Bhatia et al., 2007; Sharma, 2011). In view of the potential importance of the title compound its crystal structure is presented herein.

The asymmetric unit of the title compound contains the two independent molecules, A and B (Fig. 1). The dihedral angle between the mean plane of methyl ester unit (C13/C14/O2/O3, r.m.s deviation = -0.051 Å for A and -0.016 Å for B) and the chloroquilonin ring system (C1—C9/N1/Cl1, r.m.s deviation = 0.023 Å for A and -0.014 Å for B) is 63.5 (1)° in molecule A and 78.6 (1)° in molecule B. The main difference between the two independent molecules is reflected in the O1—C10—C11—C12 torsion angle which is -109.7 (2)° in molecule A and 10.6 (2)° in molecule B.

The methyl ester moiety adopts an extended conformation as reflected by the torsion angles for C11—C13—C14—O3 = 177.7 (2)° in A and 178.4 (1)° in B. The extended conformation is supported by the fact that the bond angles involving the carbonyl O atoms are invariably expanded (Dunitz & Schweizer, 1982). The significant difference in the bond lengths of the C13—O3 = 1.322 (3) Å (A) 1.331 (3) Å (B) versus C14—O3 = 1.447 (3) Å (A) and 1.447 (2) Å (B) can be attributed to a partial contribution from the O-–C═O+–C resonance structure of the O2—C13—O3—C14 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of these substituents in various compounds has been shown to give average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986).

In the crystal molecule A and B are linked into pairs via bifurcated O—H···(N,Cl) hydrogen bonds (Fig. 2) and a weak C—H···O hydrogen bond links pairs of molecules into chains along [100].

Experimental

A mixture of 2-chloroquinoline-3-carbaldehyde (0.1 g, 0.52 mmol), methyl acrylate (0.071 ml, 0.78 mmol), and DABCO (0.017 g, 0.15 mmol), was kept at room temperature for 7 days. After completion of the reaction (indicated by TLC), the reaction mixture was extracted with ethylacetate (3 τimes 15 ml). The combined organic layer subsequently washed with dil.HCl and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude product was obtained and purified by column chromatography eluting with 8% ethylacetate in hexane afforded the alcohol methyl 2-((2-chloroquinolin-3-yl)(hydroxy)methyl)acrylate as a colourless solid. X-ray quality crystals were obtained by slow evaporation of a solution of the title compound in ethylacetate.

Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å, O—H = 0.82° and Uiso(H) = 1.5Ueq(C) for methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound showing 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C14H12ClNO3 Z = 4
Mr = 277.70 F(000) = 576
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.2614 (4) Å Cell parameters from 4551 reflections
b = 11.0309 (4) Å θ = 2.0–25.0°
c = 13.8161 (6) Å µ = 0.30 mm1
α = 102.557 (2)° T = 293 K
β = 100.646 (2)° Block, colourless
γ = 103.704 (2)° 0.35 × 0.30 × 0.25 mm
V = 1296.29 (9) Å3

Data collection

Bruker SMART APEXII diffractometer 3767 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
Graphite monochromator θmax = 25.0°, θmin = 2.0°
ω and φ scans h = −11→10
14402 measured reflections k = −12→13
4466 independent reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4048P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4466 reflections Δρmax = 0.29 e Å3
344 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0040 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.14491 (5) 0.05724 (5) 0.40164 (4) 0.05417 (16)
O1A 0.36327 (14) −0.23933 (11) 0.28015 (10) 0.0504 (3)
H1A 0.3051 −0.3109 0.2473 0.076*
O2A 0.05490 (17) −0.36860 (13) 0.16879 (12) 0.0655 (4)
O3A −0.03759 (16) −0.26279 (14) 0.06395 (11) 0.0626 (4)
N1A 0.42615 (15) 0.19802 (13) 0.45982 (10) 0.0356 (3)
C1A 0.33952 (18) 0.08303 (15) 0.40781 (12) 0.0338 (4)
C2A 0.58039 (18) 0.22445 (15) 0.46705 (12) 0.0342 (4)
C3A 0.6764 (2) 0.35052 (17) 0.51704 (13) 0.0443 (4)
H3A 0.6352 0.4153 0.5445 0.053*
C4A 0.8297 (2) 0.37743 (19) 0.52515 (15) 0.0520 (5)
H4A 0.8929 0.4611 0.5583 0.062*
C5A 0.8944 (2) 0.2818 (2) 0.48466 (15) 0.0521 (5)
H5A 0.9999 0.3017 0.4921 0.062*
C6A 0.8037 (2) 0.16025 (19) 0.43468 (14) 0.0456 (4)
H6A 0.8474 0.0973 0.4073 0.055*
C7A 0.64369 (18) 0.12781 (16) 0.42366 (12) 0.0350 (4)
C8A 0.54251 (18) 0.00498 (16) 0.36909 (12) 0.0356 (4)
H8A 0.5817 −0.0604 0.3401 0.043*
C9A 0.38875 (18) −0.02014 (15) 0.35779 (12) 0.0321 (3)
C10A 0.27692 (18) −0.14936 (15) 0.29730 (12) 0.0352 (4)
H10A 0.2067 −0.1775 0.3385 0.042*
C11A 0.18355 (18) −0.14703 (15) 0.19609 (12) 0.0368 (4)
C12A 0.2087 (2) −0.05086 (19) 0.15361 (15) 0.0547 (5)
H12A 0.1496 −0.0596 0.0889 0.066*
H12B 0.2855 0.0259 0.1883 0.066*
C13A 0.0617 (2) −0.27074 (17) 0.14275 (14) 0.0433 (4)
C14A −0.1553 (3) −0.3815 (2) 0.00547 (18) 0.0770 (7)
H14A −0.2208 −0.3645 −0.0494 0.116*
H14B −0.2151 −0.4134 0.0493 0.116*
H14C −0.1082 −0.4451 −0.0223 0.116*
Cl1B 0.34205 (5) 0.35070 (5) 0.27784 (4) 0.05394 (16)
N1B 0.52758 (16) 0.22798 (12) 0.21855 (10) 0.0386 (3)
O1B 0.71157 (13) 0.63179 (11) 0.42717 (8) 0.0422 (3)
H1B 0.7063 0.7033 0.4560 0.063*
O2B 0.45974 (15) 0.56659 (12) 0.12824 (10) 0.0530 (3)
O3B 0.59711 (17) 0.75707 (12) 0.11953 (9) 0.0553 (4)
C1B 0.51958 (18) 0.34408 (15) 0.25490 (12) 0.0342 (4)
C2B 0.66394 (19) 0.21585 (15) 0.19986 (12) 0.0357 (4)
C3B 0.6778 (2) 0.09090 (17) 0.16220 (14) 0.0482 (5)
H3B 0.5944 0.0184 0.1500 0.058*
C4B 0.8116 (3) 0.07581 (18) 0.14373 (16) 0.0560 (5)
H4B 0.8196 −0.0072 0.1191 0.067*
C5B 0.9382 (3) 0.1835 (2) 0.16113 (18) 0.0607 (6)
H5B 1.0297 0.1717 0.1483 0.073*
C6B 0.9281 (2) 0.30528 (18) 0.19672 (16) 0.0532 (5)
H6B 1.0125 0.3764 0.2074 0.064*
C7B 0.79075 (19) 0.32456 (15) 0.21766 (13) 0.0369 (4)
C8B 0.77249 (18) 0.44774 (15) 0.25652 (12) 0.0364 (4)
H8B 0.8541 0.5215 0.2686 0.044*
C9B 0.63788 (17) 0.46076 (14) 0.27667 (11) 0.0316 (3)
C10B 0.62325 (18) 0.59300 (14) 0.32479 (12) 0.0328 (4)
H10B 0.5155 0.5844 0.3250 0.039*
C11B 0.67326 (18) 0.68846 (14) 0.26558 (12) 0.0335 (4)
C12B 0.7998 (2) 0.78554 (17) 0.29927 (15) 0.0470 (4)
H12C 0.8246 0.8416 0.2595 0.056*
H12D 0.8646 0.7982 0.3629 0.056*
C13B 0.5651 (2) 0.66278 (15) 0.16500 (13) 0.0375 (4)
C14B 0.4924 (3) 0.7379 (2) 0.02265 (16) 0.0765 (7)
H14D 0.5241 0.8104 −0.0041 0.115*
H14E 0.3909 0.7304 0.0321 0.115*
H14F 0.4924 0.6599 −0.0246 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0291 (2) 0.0501 (3) 0.0697 (3) 0.00871 (19) 0.0111 (2) −0.0073 (2)
O1A 0.0485 (7) 0.0334 (6) 0.0626 (8) 0.0161 (6) 0.0061 (6) 0.0011 (6)
O2A 0.0628 (9) 0.0374 (8) 0.0763 (10) −0.0048 (6) 0.0039 (8) 0.0076 (7)
O3A 0.0484 (8) 0.0571 (9) 0.0545 (8) −0.0067 (6) −0.0094 (7) 0.0015 (7)
N1A 0.0342 (7) 0.0321 (7) 0.0354 (7) 0.0073 (6) 0.0065 (6) 0.0029 (6)
C1A 0.0290 (8) 0.0363 (9) 0.0329 (8) 0.0085 (7) 0.0059 (7) 0.0052 (7)
C2A 0.0332 (9) 0.0356 (9) 0.0300 (8) 0.0054 (7) 0.0042 (7) 0.0093 (7)
C3A 0.0472 (11) 0.0356 (9) 0.0436 (10) 0.0040 (8) 0.0095 (8) 0.0079 (8)
C4A 0.0425 (11) 0.0462 (11) 0.0518 (11) −0.0086 (9) 0.0031 (9) 0.0129 (9)
C5A 0.0308 (9) 0.0623 (13) 0.0565 (12) 0.0009 (9) 0.0039 (8) 0.0225 (10)
C6A 0.0335 (9) 0.0544 (11) 0.0499 (11) 0.0135 (8) 0.0089 (8) 0.0166 (9)
C7A 0.0326 (8) 0.0394 (9) 0.0323 (8) 0.0097 (7) 0.0046 (7) 0.0122 (7)
C8A 0.0359 (9) 0.0357 (9) 0.0355 (9) 0.0129 (7) 0.0089 (7) 0.0075 (7)
C9A 0.0322 (8) 0.0316 (8) 0.0301 (8) 0.0085 (7) 0.0063 (6) 0.0057 (6)
C10A 0.0358 (9) 0.0288 (8) 0.0383 (9) 0.0085 (7) 0.0101 (7) 0.0042 (7)
C11A 0.0329 (9) 0.0328 (9) 0.0377 (9) 0.0039 (7) 0.0079 (7) 0.0024 (7)
C12A 0.0561 (12) 0.0461 (11) 0.0455 (11) −0.0004 (9) −0.0049 (9) 0.0104 (9)
C13A 0.0383 (10) 0.0398 (10) 0.0422 (10) 0.0030 (8) 0.0108 (8) −0.0001 (8)
C14A 0.0527 (13) 0.0717 (15) 0.0651 (14) −0.0098 (11) −0.0082 (11) −0.0158 (12)
Cl1B 0.0352 (2) 0.0458 (3) 0.0787 (4) 0.0054 (2) 0.0187 (2) 0.0156 (2)
N1B 0.0413 (8) 0.0290 (7) 0.0403 (8) 0.0030 (6) 0.0077 (6) 0.0087 (6)
O1B 0.0493 (7) 0.0388 (7) 0.0343 (6) 0.0170 (6) 0.0034 (5) 0.0026 (5)
O2B 0.0555 (8) 0.0369 (7) 0.0473 (7) 0.0006 (6) −0.0073 (6) 0.0035 (6)
O3B 0.0787 (10) 0.0391 (7) 0.0404 (7) 0.0100 (7) 0.0008 (6) 0.0144 (6)
C1B 0.0328 (8) 0.0326 (9) 0.0348 (9) 0.0054 (7) 0.0058 (7) 0.0110 (7)
C2B 0.0450 (10) 0.0278 (8) 0.0326 (8) 0.0078 (7) 0.0078 (7) 0.0093 (7)
C3B 0.0625 (12) 0.0281 (9) 0.0502 (11) 0.0083 (8) 0.0157 (9) 0.0068 (8)
C4B 0.0755 (14) 0.0349 (10) 0.0615 (13) 0.0233 (10) 0.0231 (11) 0.0080 (9)
C5B 0.0591 (13) 0.0498 (12) 0.0796 (15) 0.0261 (10) 0.0275 (11) 0.0107 (11)
C6B 0.0438 (11) 0.0393 (10) 0.0747 (14) 0.0113 (8) 0.0193 (10) 0.0088 (9)
C7B 0.0401 (9) 0.0314 (8) 0.0385 (9) 0.0105 (7) 0.0092 (7) 0.0085 (7)
C8B 0.0337 (9) 0.0264 (8) 0.0430 (9) 0.0032 (7) 0.0061 (7) 0.0065 (7)
C9B 0.0330 (8) 0.0287 (8) 0.0307 (8) 0.0065 (7) 0.0044 (7) 0.0090 (6)
C10B 0.0308 (8) 0.0291 (8) 0.0348 (9) 0.0074 (6) 0.0047 (7) 0.0051 (7)
C11B 0.0350 (9) 0.0252 (8) 0.0367 (9) 0.0089 (7) 0.0063 (7) 0.0033 (7)
C12B 0.0444 (10) 0.0370 (10) 0.0510 (11) 0.0017 (8) 0.0039 (8) 0.0124 (8)
C13B 0.0450 (10) 0.0274 (8) 0.0376 (9) 0.0121 (8) 0.0072 (8) 0.0047 (7)
C14B 0.115 (2) 0.0619 (14) 0.0432 (12) 0.0268 (14) −0.0072 (12) 0.0172 (10)

Geometric parameters (Å, º)

Cl1A—C1A 1.7396 (16) Cl1B—C1B 1.7459 (17)
O1A—C10A 1.4228 (19) N1B—C1B 1.295 (2)
O1A—H1A 0.8200 N1B—C2B 1.366 (2)
O2A—C13A 1.202 (2) O1B—C10B 1.4130 (18)
O3A—C13A 1.322 (2) O1B—H1B 0.8200
O3A—C14A 1.447 (2) O2B—C13B 1.195 (2)
N1A—C1A 1.295 (2) O3B—C13B 1.331 (2)
N1A—C2A 1.369 (2) O3B—C14B 1.441 (2)
C1A—C9A 1.415 (2) C1B—C9B 1.410 (2)
C2A—C3A 1.404 (2) C2B—C7B 1.406 (2)
C2A—C7A 1.410 (2) C2B—C3B 1.408 (2)
C3A—C4A 1.358 (3) C3B—C4B 1.351 (3)
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—C5A 1.397 (3) C4B—C5B 1.399 (3)
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—C6A 1.353 (3) C5B—C6B 1.358 (3)
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—C7A 1.410 (2) C6B—C7B 1.409 (2)
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—C8A 1.406 (2) C7B—C8B 1.410 (2)
C8A—C9A 1.357 (2) C8B—C9B 1.359 (2)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.505 (2) C9B—C10B 1.514 (2)
C10A—C11A 1.511 (2) C10B—C11B 1.509 (2)
C10A—H10A 0.9800 C10B—H10B 0.9800
C11A—C12A 1.315 (3) C11B—C12B 1.313 (2)
C11A—C13A 1.485 (2) C11B—C13B 1.481 (2)
C12A—H12A 0.9300 C12B—H12C 0.9300
C12A—H12B 0.9300 C12B—H12D 0.9300
C14A—H14A 0.9600 C14B—H14D 0.9600
C14A—H14B 0.9600 C14B—H14E 0.9600
C14A—H14C 0.9600 C14B—H14F 0.9600
C10A—O1A—H1A 109.5 C1B—N1B—C2B 117.42 (14)
C13A—O3A—C14A 116.51 (17) C10B—O1B—H1B 109.5
C1A—N1A—C2A 117.75 (14) C13B—O3B—C14B 115.36 (15)
N1A—C1A—C9A 126.31 (15) N1B—C1B—C9B 126.51 (15)
N1A—C1A—Cl1A 115.01 (12) N1B—C1B—Cl1B 114.43 (12)
C9A—C1A—Cl1A 118.68 (12) C9B—C1B—Cl1B 119.06 (12)
N1A—C2A—C3A 119.28 (15) N1B—C2B—C7B 121.77 (14)
N1A—C2A—C7A 121.07 (14) N1B—C2B—C3B 119.00 (15)
C3A—C2A—C7A 119.64 (15) C7B—C2B—C3B 119.23 (16)
C4A—C3A—C2A 119.69 (18) C4B—C3B—C2B 120.34 (18)
C4A—C3A—H3A 120.2 C4B—C3B—H3B 119.8
C2A—C3A—H3A 120.2 C2B—C3B—H3B 119.8
C3A—C4A—C5A 121.23 (17) C3B—C4B—C5B 120.76 (17)
C3A—C4A—H4A 119.4 C3B—C4B—H4B 119.6
C5A—C4A—H4A 119.4 C5B—C4B—H4B 119.6
C6A—C5A—C4A 120.03 (17) C6B—C5B—C4B 120.30 (19)
C6A—C5A—H5A 120.0 C6B—C5B—H5B 119.9
C4A—C5A—H5A 120.0 C4B—C5B—H5B 119.9
C5A—C6A—C7A 120.83 (18) C5B—C6B—C7B 120.46 (18)
C5A—C6A—H6A 119.6 C5B—C6B—H6B 119.8
C7A—C6A—H6A 119.6 C7B—C6B—H6B 119.8
C8A—C7A—C6A 123.60 (16) C2B—C7B—C8B 117.38 (15)
C8A—C7A—C2A 117.83 (15) C2B—C7B—C6B 118.91 (15)
C6A—C7A—C2A 118.54 (15) C8B—C7B—C6B 123.71 (16)
C9A—C8A—C7A 121.35 (15) C9B—C8B—C7B 121.30 (15)
C9A—C8A—H8A 119.3 C9B—C8B—H8B 119.3
C7A—C8A—H8A 119.3 C7B—C8B—H8B 119.3
C8A—C9A—C1A 115.59 (14) C8B—C9B—C1B 115.61 (14)
C8A—C9A—C10A 122.69 (14) C8B—C9B—C10B 120.66 (14)
C1A—C9A—C10A 121.72 (14) C1B—C9B—C10B 123.64 (14)
O1A—C10A—C9A 107.26 (13) O1B—C10B—C11B 112.74 (13)
O1A—C10A—C11A 109.72 (13) O1B—C10B—C9B 106.54 (12)
C9A—C10A—C11A 113.64 (13) C11B—C10B—C9B 111.38 (13)
O1A—C10A—H10A 108.7 O1B—C10B—H10B 108.7
C9A—C10A—H10A 108.7 C11B—C10B—H10B 108.7
C11A—C10A—H10A 108.7 C9B—C10B—H10B 108.7
C12A—C11A—C13A 121.29 (16) C12B—C11B—C13B 122.74 (16)
C12A—C11A—C10A 125.54 (15) C12B—C11B—C10B 123.77 (15)
C13A—C11A—C10A 113.06 (14) C13B—C11B—C10B 113.50 (13)
C11A—C12A—H12A 120.0 C11B—C12B—H12C 120.0
C11A—C12A—H12B 120.0 C11B—C12B—H12D 120.0
H12A—C12A—H12B 120.0 H12C—C12B—H12D 120.0
O2A—C13A—O3A 123.47 (17) O2B—C13B—O3B 123.36 (15)
O2A—C13A—C11A 122.95 (17) O2B—C13B—C11B 123.22 (15)
O3A—C13A—C11A 113.58 (16) O3B—C13B—C11B 113.42 (14)
O3A—C14A—H14A 109.5 O3B—C14B—H14D 109.5
O3A—C14A—H14B 109.5 O3B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
O3A—C14A—H14C 109.5 O3B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
C2A—N1A—C1A—C9A 0.7 (2) C2B—N1B—C1B—C9B 0.6 (2)
C2A—N1A—C1A—Cl1A −179.69 (11) C2B—N1B—C1B—Cl1B −179.34 (11)
C1A—N1A—C2A—C3A 175.82 (15) C1B—N1B—C2B—C7B −0.9 (2)
C1A—N1A—C2A—C7A −3.1 (2) C1B—N1B—C2B—C3B 178.77 (15)
N1A—C2A—C3A—C4A 179.57 (16) N1B—C2B—C3B—C4B −179.50 (17)
C7A—C2A—C3A—C4A −1.5 (2) C7B—C2B—C3B—C4B 0.2 (3)
C2A—C3A—C4A—C5A 0.0 (3) C2B—C3B—C4B—C5B −0.3 (3)
C3A—C4A—C5A—C6A 1.2 (3) C3B—C4B—C5B—C6B −0.2 (3)
C4A—C5A—C6A—C7A −0.7 (3) C4B—C5B—C6B—C7B 0.7 (3)
C5A—C6A—C7A—C8A 177.30 (17) N1B—C2B—C7B—C8B 0.4 (2)
C5A—C6A—C7A—C2A −0.8 (3) C3B—C2B—C7B—C8B −179.26 (15)
N1A—C2A—C7A—C8A 2.6 (2) N1B—C2B—C7B—C6B −179.98 (16)
C3A—C2A—C7A—C8A −176.31 (15) C3B—C2B—C7B—C6B 0.3 (2)
N1A—C2A—C7A—C6A −179.18 (15) C5B—C6B—C7B—C2B −0.8 (3)
C3A—C2A—C7A—C6A 1.9 (2) C5B—C6B—C7B—C8B 178.76 (19)
C6A—C7A—C8A—C9A −177.76 (16) C2B—C7B—C8B—C9B 0.5 (2)
C2A—C7A—C8A—C9A 0.4 (2) C6B—C7B—C8B—C9B −179.11 (17)
C7A—C8A—C9A—C1A −2.5 (2) C7B—C8B—C9B—C1B −0.8 (2)
C7A—C8A—C9A—C10A 178.19 (15) C7B—C8B—C9B—C10B 176.02 (14)
N1A—C1A—C9A—C8A 2.1 (2) N1B—C1B—C9B—C8B 0.3 (2)
Cl1A—C1A—C9A—C8A −177.49 (12) Cl1B—C1B—C9B—C8B −179.82 (12)
N1A—C1A—C9A—C10A −178.61 (16) N1B—C1B—C9B—C10B −176.42 (15)
Cl1A—C1A—C9A—C10A 1.8 (2) Cl1B—C1B—C9B—C10B 3.5 (2)
C8A—C9A—C10A—O1A 14.0 (2) C8B—C9B—C10B—O1B −70.40 (18)
C1A—C9A—C10A—O1A −165.25 (14) C1B—C9B—C10B—O1B 106.14 (16)
C8A—C9A—C10A—C11A −107.46 (17) C8B—C9B—C10B—C11B 52.92 (19)
C1A—C9A—C10A—C11A 73.3 (2) C1B—C9B—C10B—C11B −130.54 (15)
O1A—C10A—C11A—C12A −109.7 (2) O1B—C10B—C11B—C12B 10.6 (2)
C9A—C10A—C11A—C12A 10.4 (2) C9B—C10B—C11B—C12B −109.15 (18)
O1A—C10A—C11A—C13A 66.52 (18) O1B—C10B—C11B—C13B −169.19 (12)
C9A—C10A—C11A—C13A −173.42 (13) C9B—C10B—C11B—C13B 71.10 (17)
C14A—O3A—C13A—O2A −2.5 (3) C14B—O3B—C13B—O2B 1.8 (3)
C14A—O3A—C13A—C11A 177.18 (17) C14B—O3B—C13B—C11B −178.39 (16)
C12A—C11A—C13A—O2A 164.7 (2) C12B—C11B—C13B—O2B 170.78 (18)
C10A—C11A—C13A—O2A −11.7 (2) C10B—C11B—C13B—O2B −9.5 (2)
C12A—C11A—C13A—O3A −15.0 (3) C12B—C11B—C13B—O3B −9.0 (2)
C10A—C11A—C13A—O3A 168.60 (15) C10B—C11B—C13B—O3B 170.72 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2A 0.82 2.24 2.8372 (19) 130
O1B—H1B···Cl1Ai 0.82 2.79 3.5040 (12) 147
O1B—H1B···N1Ai 0.82 2.16 2.8609 (17) 144
C5A—H5A···O1Bii 0.93 2.56 3.451 (2) 162

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5607).

References

  1. Bhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S. & Api, A. M. (2007). J. Food Chem. Toxicol. 45, S113–S119. [DOI] [PubMed]
  2. Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70.
  3. Bruker (2008). APEX2 and SAINT Bruker AXS Ins., Madison, Wisconsin, USA.
  4. Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Merlino, S. (1971). Acta Cryst. B27, 2491–2492.
  7. Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535. [DOI] [PubMed]
  8. Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shen, A. Y., Wu, S. N. & Chiu, C. T. (1999). J. Pharm. Pharmacol. 51, 543–548. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Towers, G. H. N., Graham, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142. [DOI] [PubMed]
  13. Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014050/lh5607sup1.cif

e-69-0o990-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014050/lh5607Isup2.hkl

e-69-0o990-Isup2.hkl (214.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014050/lh5607Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES