Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 May 31;69(Pt 6):o999–o1000. doi: 10.1107/S1600536813014396

2-Benzoyl-4-chloro­phenyl benzoate

Bushra Begum A a, Mohammed Al-Ghorbani a, Suresh Sharma b, Vivek K Gupta b, Shaukath Ara Khanum a,*
PMCID: PMC3685129  PMID: 23795148

Abstract

In the title compound, C20H13ClO3, the dihedral angles between the benzoate and the chloro­benzene and benzoyl rings are 68.82 (5) and 53.76 (6)°, respectively, while the dihedral angle between the benzoyl and benzoate rings is 81.17 (5)°. The eight atoms of the benzoyl residue are essentially planar with the exception of the O atom which lies 0.1860 (5) Å out of their mean plane (r.m.s. deviation = 0.97 Å). The nine atoms of benzoate residue are also essentially planar (r.m.s. deviation = 0.20 Å) with the ester O atom showing the greatest deviation [0.407 (12) Å] from their mean plane. In the crystal, mol­ecules are connected into centrosymmetric dimers by pairs of C—H⋯O hydrogen bonds.

Related literature  

For related structures, see: Sieroń et al. (2004); Mahendra et al. (2005); Naveen et al. (2006). For the biological activity of the title compound, see: Belluti et al. (2011); Revesz et al. (2004); Khanum et al. (2004, 2009, 2010). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-0o999-scheme1.jpg

Experimental  

Crystal data  

  • C20H13ClO3

  • M r = 336.75

  • Triclinic, Inline graphic

  • a = 9.1934 (2) Å

  • b = 9.8641 (3) Å

  • c = 10.0778 (3) Å

  • α = 94.033 (2)°

  • β = 114.207 (2)°

  • γ = 102.512 (2)°

  • V = 800.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.871, T max = 1.000

  • 18813 measured reflections

  • 3131 independent reflections

  • 2631 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.03

  • 3131 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014396/go2090sup1.cif

e-69-0o999-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014396/go2090Isup2.hkl

e-69-0o999-Isup2.hkl (150.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014396/go2090Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O7i 0.93 2.50 3.394 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

SAK gratefully acknowledges financial support provided by the UGC, New Delhi, under the Major Research Project Scheme.

supplementary crystallographic information

Comment

The benzophenone nucleus is an important part of the therapeutically interesting drug candidate as inhibitors of HIV-1 reverse transcriptase RT, cancer (Revesz et al., 2004) and inflammatory (Khanum et al., 2004; Khanum et al., 2009; Khanum et al., 2010). Therefore, a number of benzophenone analogues were synthesized, and their chemistry has been extensively studied. The benzophenone moiety, a structural element often seen in compounds from natural sources, presents a variety of biological activities such as anti-inflammatory, antimalarial and anticancer and demonstrated to be a versatile pharmacophoric nucleus, largely used in medicinal chemistry programs (Belluti et al., 2011). The importance of these substances is basically due to the diverse biological and chemical properties that they possess. In view of the above importance and to understand the conformation of the benzophenone moiety, the crystal structure determination of the title compound, was carried out. Bond lengths and bond angles of the title molecule show a fair amount of agreement with some related molecules related structures (Sieroń et al., 2004; Naveen et al., 2006; Mahendra et al., 2005). All bond lengths and angles are within expected values (Allen et al., 1987). The title compound has three benzene rings which are linked by carbonyl and ester groups. The dihedral angles between the ring (C1–C6) and (C8–C13) is 68.82 (5)°, ring (C1–C6) and (C16–C21) is 53.76 (6)° and ring (C8–C13) makes a dihedral angle of 81.17 (5)° with ring (C16–C21). The conformation of attachment of the benzoyl and benzoate rings to the central benzene ring can be characterized by torsion angles C6—C1—C7—C8 and C1—C2—O14—C15 of -54.9 (2) and -58.4 (2)°, respectively. The double bonds C7═O7 and C15═O15 are confirmed by their respective distances of 1.214 (2) and 1.196 (2) Å. Packing view of the molecules in the unit cell viewed down the a axis is shown in Fig. 2. The molecules are linked by intermolecular C20—H20···O7 interactions through hydrogen bonding of the carbonyl (benzophenone moiety) and ester substituent. The interaction with a neighbouring molecule is related to the other by a centre of inversion and form hydrogen-bonded dimer unit. Each unit is independently stacked when viewed down the a axis Fig.3.

Experimental

To a solution of (2-hydroxy-5-chlorophenyl) phenyl methanone (1, 1.99 g, 8.6 mmol) in 10% sodium hydroxide solution, benzoyl chloride (1.10 g, 8.6 mmol) was added with constant stirring. The reaction mixture was cooled to 0°C, made alkaline by adding 10% sodium solution and stirring was continued for about 1 h. The separated solid was extracted with ether (3 × 20 ml), the organic layer was washed with 10% sodium hydroxide solution (3 × 15 ml) and with distilled water (3 × 30 ml). The organic layer was dried over anhydrous sodium sulfate and ether was removed to afford crude product, which on recrystallization with alcohol gave white crystals of title compound. Yield: 71%, m.p. 365–367K.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labelling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis.

Crystal data

C20H13ClO3 Z = 2
Mr = 336.75 F(000) = 348
Triclinic, P1 Dx = 1.397 Mg m3
Hall symbol: -P 1 Melting point: 367 K
a = 9.1934 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8641 (3) Å Cell parameters from 10537 reflections
c = 10.0778 (3) Å θ = 3.5–29.1°
α = 94.033 (2)° µ = 0.25 mm1
β = 114.207 (2)° T = 293 K
γ = 102.512 (2)° Block, white
V = 800.64 (4) Å3 0.30 × 0.20 × 0.20 mm

Data collection

Oxford Xcalibur Sapphire3 diffractometer 3131 independent reflections
Radiation source: fine-focus sealed tube 2631 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −12→12
Tmin = 0.871, Tmax = 1.000 l = −12→12
18813 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.3095P] where P = (Fo2 + 2Fc2)/3
3131 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.Elemental analysis for C20H13ClO3: IR (nujol): 1660 (C═O), 1750 cm-1 (ester, C═O); 1H NMR (CDCl3): δ 6.9–7.6 (m, 13H, Ar—H). Analysis, calculated for C20H13ClO3 (336.5): C 71.33, H 3.89, Cl 0.53; found: C 71.39, H 3.72, Cl 10.44%.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.13053 (5) 0.16990 (5) 0.62243 (6) 0.05937 (15)
O14 0.79582 (13) 0.43743 (11) 0.68298 (12) 0.0453 (3)
O15 0.94425 (14) 0.36025 (11) 0.88776 (12) 0.0459 (3)
C6 0.43806 (19) 0.16383 (16) 0.66293 (16) 0.0384 (3)
H6 0.4044 0.0682 0.6644 0.046*
C2 0.64376 (18) 0.36708 (16) 0.67781 (16) 0.0373 (3)
C1 0.59678 (18) 0.22283 (15) 0.67650 (16) 0.0357 (3)
C5 0.33045 (18) 0.24639 (17) 0.64737 (17) 0.0400 (4)
C7 0.70368 (18) 0.12708 (15) 0.67663 (17) 0.0385 (3)
C15 0.94012 (18) 0.43373 (15) 0.79760 (16) 0.0356 (3)
C16 1.08476 (18) 0.53267 (15) 0.79432 (17) 0.0355 (3)
O7 0.75790 (16) 0.12731 (13) 0.58523 (15) 0.0569 (3)
C8 0.73479 (18) 0.03063 (15) 0.78589 (17) 0.0376 (3)
C3 0.5371 (2) 0.44936 (16) 0.66627 (18) 0.0439 (4)
H3 0.5719 0.5459 0.6696 0.053*
C21 1.0687 (2) 0.61313 (17) 0.68447 (19) 0.0466 (4)
H21 0.9646 0.6049 0.6085 0.056*
C4 0.3790 (2) 0.38951 (17) 0.64981 (18) 0.0438 (4)
H4 0.3063 0.4447 0.6405 0.053*
C13 0.71872 (19) 0.05701 (16) 0.91536 (18) 0.0422 (4)
H13 0.6800 0.1331 0.9321 0.051*
C17 1.24005 (19) 0.54643 (16) 0.90776 (18) 0.0417 (4)
H17 1.2518 0.4925 0.9817 0.050*
C18 1.3775 (2) 0.64032 (18) 0.9110 (2) 0.0496 (4)
H18 1.4816 0.6503 0.9877 0.060*
C9 0.7918 (2) −0.08432 (17) 0.7620 (2) 0.0481 (4)
H9 0.8034 −0.1032 0.6757 0.058*
C19 1.3604 (2) 0.71918 (18) 0.8006 (2) 0.0527 (4)
H19 1.4531 0.7818 0.8026 0.063*
C20 1.2068 (2) 0.70554 (19) 0.6876 (2) 0.0553 (5)
H20 1.1958 0.7586 0.6131 0.066*
C11 0.8161 (2) −0.14242 (18) 0.9953 (2) 0.0539 (5)
H11 0.8441 −0.2001 1.0659 0.065*
C12 0.7599 (2) −0.02918 (18) 1.0198 (2) 0.0505 (4)
H12 0.7495 −0.0105 1.1068 0.061*
C10 0.8310 (2) −0.17028 (17) 0.8670 (2) 0.0551 (5)
H10 0.8678 −0.2476 0.8504 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0354 (2) 0.0713 (3) 0.0687 (3) 0.0086 (2) 0.0220 (2) 0.0177 (2)
O7 0.0698 (9) 0.0553 (7) 0.0646 (8) 0.0210 (6) 0.0445 (7) 0.0177 (6)
O14 0.0337 (6) 0.0453 (6) 0.0512 (7) 0.0043 (5) 0.0140 (5) 0.0220 (5)
O15 0.0434 (6) 0.0429 (6) 0.0474 (7) 0.0067 (5) 0.0168 (5) 0.0174 (5)
C1 0.0348 (8) 0.0362 (8) 0.0338 (8) 0.0081 (6) 0.0132 (6) 0.0089 (6)
C2 0.0327 (8) 0.0382 (8) 0.0366 (8) 0.0055 (6) 0.0121 (6) 0.0121 (6)
C3 0.0429 (9) 0.0341 (8) 0.0464 (9) 0.0090 (7) 0.0115 (7) 0.0107 (7)
C4 0.0402 (9) 0.0443 (9) 0.0437 (9) 0.0166 (7) 0.0127 (7) 0.0078 (7)
C5 0.0310 (8) 0.0484 (9) 0.0360 (8) 0.0073 (7) 0.0119 (7) 0.0074 (7)
C6 0.0385 (8) 0.0349 (8) 0.0375 (8) 0.0054 (6) 0.0143 (7) 0.0078 (6)
C7 0.0348 (8) 0.0343 (8) 0.0429 (9) 0.0039 (6) 0.0167 (7) 0.0043 (6)
C8 0.0308 (8) 0.0310 (7) 0.0463 (9) 0.0058 (6) 0.0137 (7) 0.0054 (6)
C9 0.0436 (9) 0.0396 (9) 0.0581 (11) 0.0116 (7) 0.0202 (8) 0.0032 (8)
C10 0.0467 (10) 0.0340 (8) 0.0779 (14) 0.0161 (8) 0.0182 (10) 0.0093 (8)
C11 0.0463 (10) 0.0418 (9) 0.0638 (12) 0.0107 (8) 0.0134 (9) 0.0201 (8)
C12 0.0515 (10) 0.0476 (10) 0.0500 (10) 0.0127 (8) 0.0192 (8) 0.0150 (8)
C13 0.0427 (9) 0.0345 (8) 0.0487 (9) 0.0116 (7) 0.0183 (8) 0.0082 (7)
C15 0.0375 (8) 0.0307 (7) 0.0375 (8) 0.0091 (6) 0.0152 (7) 0.0067 (6)
C16 0.0353 (8) 0.0313 (7) 0.0387 (8) 0.0071 (6) 0.0162 (7) 0.0049 (6)
C17 0.0409 (9) 0.0409 (8) 0.0403 (9) 0.0103 (7) 0.0153 (7) 0.0066 (7)
C18 0.0338 (9) 0.0498 (10) 0.0534 (10) 0.0048 (7) 0.0124 (8) −0.0009 (8)
C19 0.0426 (10) 0.0439 (9) 0.0683 (12) −0.0011 (7) 0.0281 (9) 0.0052 (8)
C20 0.0533 (11) 0.0502 (10) 0.0635 (12) 0.0068 (8) 0.0280 (10) 0.0241 (9)
C21 0.0389 (9) 0.0460 (9) 0.0497 (10) 0.0065 (7) 0.0156 (8) 0.0169 (8)

Geometric parameters (Å, º)

C1—C2 1.392 (2) C11—C12 1.375 (2)
C1—C6 1.394 (2) C11—H11 0.9300
C1—C7 1.503 (2) C12—C13 1.383 (2)
C2—C3 1.378 (2) C12—H12 0.9300
C2—O14 1.3977 (17) C13—H13 0.9300
C3—C4 1.381 (2) C15—O15 1.1952 (17)
C3—H3 0.9300 C15—O14 1.3660 (18)
C4—C5 1.380 (2) C15—C16 1.483 (2)
C4—H4 0.9300 C16—C21 1.385 (2)
C5—C6 1.381 (2) C16—C17 1.385 (2)
C5—Cl1 1.7333 (15) C17—C18 1.382 (2)
C6—H6 0.9300 C17—H17 0.9300
C7—O7 1.2138 (19) C18—C19 1.378 (3)
C7—C8 1.485 (2) C18—H18 0.9300
C8—C13 1.385 (2) C19—C20 1.373 (3)
C8—C9 1.393 (2) C19—H19 0.9300
C9—C10 1.384 (2) C20—C21 1.381 (2)
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.370 (3) C21—H21 0.9300
C10—H10 0.9300
C2—C1—C6 117.95 (14) C10—C11—H11 120.0
C2—C1—C7 122.98 (13) C12—C11—H11 120.0
C6—C1—C7 118.88 (13) C11—C12—C13 120.16 (17)
C3—C2—C1 121.19 (14) C11—C12—H12 119.9
C3—C2—O14 115.25 (13) C13—C12—H12 119.9
C1—C2—O14 123.49 (14) C12—C13—C8 120.34 (15)
C2—C3—C4 120.46 (14) C12—C13—H13 119.8
C2—C3—H3 119.8 C8—C13—H13 119.8
C4—C3—H3 119.8 O15—C15—O14 122.79 (13)
C5—C4—C3 118.93 (15) O15—C15—C16 126.12 (14)
C5—C4—H4 120.5 O14—C15—C16 111.09 (12)
C3—C4—H4 120.5 C21—C16—C17 119.55 (14)
C4—C5—C6 120.98 (14) C21—C16—C15 122.27 (14)
C4—C5—Cl1 119.15 (12) C17—C16—C15 118.16 (13)
C6—C5—Cl1 119.87 (12) C18—C17—C16 120.00 (15)
C5—C6—C1 120.46 (14) C18—C17—H17 120.0
C5—C6—H6 119.8 C16—C17—H17 120.0
C1—C6—H6 119.8 C19—C18—C17 120.01 (16)
O7—C7—C8 121.80 (14) C19—C18—H18 120.0
O7—C7—C1 119.47 (14) C17—C18—H18 120.0
C8—C7—C1 118.69 (13) C20—C19—C18 120.21 (15)
C13—C8—C9 119.11 (15) C20—C19—H19 119.9
C13—C8—C7 121.70 (14) C18—C19—H19 119.9
C9—C8—C7 119.07 (15) C19—C20—C21 120.11 (16)
C10—C9—C8 119.83 (17) C19—C20—H20 119.9
C10—C9—H9 120.1 C21—C20—H20 119.9
C8—C9—H9 120.1 C20—C21—C16 120.11 (15)
C11—C10—C9 120.57 (16) C20—C21—H21 119.9
C11—C10—H10 119.7 C16—C21—H21 119.9
C9—C10—H10 119.7 C15—O14—C2 119.99 (11)
C10—C11—C12 119.99 (16)
C6—C1—C2—C3 0.1 (2) C8—C9—C10—C11 −0.8 (3)
C7—C1—C2—C3 175.00 (14) C9—C10—C11—C12 0.8 (3)
C6—C1—C2—O14 −176.52 (13) C10—C11—C12—C13 −0.2 (3)
C7—C1—C2—O14 −1.6 (2) C11—C12—C13—C8 −0.4 (3)
C1—C2—C3—C4 −1.4 (2) C9—C8—C13—C12 0.5 (2)
O14—C2—C3—C4 175.44 (14) C7—C8—C13—C12 −175.37 (15)
C2—C3—C4—C5 1.0 (2) O15—C15—C16—C21 179.39 (16)
C3—C4—C5—C6 0.8 (2) O14—C15—C16—C21 −1.5 (2)
C3—C4—C5—Cl1 −178.51 (13) O15—C15—C16—C17 −2.2 (2)
C4—C5—C6—C1 −2.2 (2) O14—C15—C16—C17 176.90 (13)
Cl1—C5—C6—C1 177.15 (12) C21—C16—C17—C18 0.2 (2)
C2—C1—C6—C5 1.7 (2) C15—C16—C17—C18 −178.25 (14)
C7—C1—C6—C5 −173.43 (14) C16—C17—C18—C19 −0.7 (3)
C2—C1—C7—O7 −52.1 (2) C17—C18—C19—C20 0.4 (3)
C6—C1—C7—O7 122.75 (17) C18—C19—C20—C21 0.3 (3)
C2—C1—C7—C8 130.12 (15) C19—C20—C21—C16 −0.8 (3)
C6—C1—C7—C8 −55.02 (19) C17—C16—C21—C20 0.5 (3)
O7—C7—C8—C13 160.10 (16) C15—C16—C21—C20 178.90 (16)
C1—C7—C8—C13 −22.2 (2) O15—C15—O14—C2 8.1 (2)
O7—C7—C8—C9 −15.7 (2) C16—C15—O14—C2 −171.02 (13)
C1—C7—C8—C9 161.98 (14) C3—C2—O14—C15 124.88 (15)
C13—C8—C9—C10 0.1 (2) C1—C2—O14—C15 −58.3 (2)
C7—C8—C9—C10 176.07 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···O7i 0.93 2.50 3.394 (2) 162

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2090).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Belluti, F., Bartolini, M., Bottegoni, G., Bisi, A., Cavalli, A., Andrisano, V. & Rampa, A. (2011). Eur. J. Med. Chem. 46, 1682–1693. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Khanum, S. A., Begum, B. A., Girish, V. & Khanum, N. F. (2010). Int. J. Biomed. Sci. 6, 60–65. [PMC free article] [PubMed]
  5. Khanum, S. A., Girish, V., Suparshwa, S. S. & Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887–91. [DOI] [PubMed]
  6. Khanum, S. A., Shashikanth, S. & Deepak, A. V. (2004). Bioorg. Chem. 32, 211–222. [DOI] [PubMed]
  7. Mahendra, M., Doreswamy, B. H., Sridhar, M. A., Prasad, J. S., Khanum, S. A., Shashikanth, S. & Venu, T. D. (2005). J. Chem. Crystallogr. 35, 463–467.
  8. Naveen, S., Venu, T. D., Shashikanth, S., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o5896–o5898.
  9. Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Revesz, L., Blum, F. E., Di Padova, E. T., Buhl, R., Feifel, H., Gram, P., Hiestand, U., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3595–3599. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889–o1891.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014396/go2090sup1.cif

e-69-0o999-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014396/go2090Isup2.hkl

e-69-0o999-Isup2.hkl (150.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014396/go2090Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES