Abstract
A cycloheximide-resistant strain of Tetrahymena thermophila, expressing a mutant chx-B gene (Ares and Bruns, Genetics 90:463-474, 1978), displayed very different temperature-dependent growth characteristics than either wild-type cells or another cycloheximide-resistant strain expressing a different mutant gene. Whereas wild-type cells showed an immediate decline in ribosome translocation rates when shifted from 30 to 38 or 40 degrees C, this mutant strain (X-8) showed no such decline. These results directly correlated with the growth rate differences we found for these cells at these temperatures. By genetic analysis, we showed that the phenotype of cycloheximide resistance cosegregated with the ability to grow rapidly at 40 degrees C. Analyses, both direct and indirect, suggested that a number of functional and structural characteristics of the ribosomes from strain X-8 cells are most likely conformationally different from those of wild-type ribosomes.
Full text
PDF![503](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/e7b5d32d2e43/molcellb00158-0015.png)
![504](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/76342281015b/molcellb00158-0016.png)
![505](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/c0bf9422de43/molcellb00158-0017.png)
![506](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/6a63e2f8ea6a/molcellb00158-0018.png)
![507](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/0d46222a3a68/molcellb00158-0019.png)
![508](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/13335e2bf094/molcellb00158-0020.png)
![509](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/d41a5e16af45/molcellb00158-0021.png)
![510](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c0/368566/456851bfce30/molcellb00158-0022.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ares M., Jr, Bruns P. J. Isolation and genetic characterization of a mutation affecting ribosomal resistance to cycloheximide in Tetrahymena. Genetics. 1978 Nov;90(3):463–474. doi: 10.1093/genetics/90.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Fried H. M., Warner J. R. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci U S A. 1981 Jan;78(1):238–242. doi: 10.1073/pnas.78.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glover C. V. Heat shock induces rapid dephosphorylation of a ribosomal protein in Drosophila. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1781–1785. doi: 10.1073/pnas.79.6.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guttman S. D., Glover C. V., Allis C. D., Gorovsky M. A. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell. 1980 Nov;22(1 Pt 1):299–307. doi: 10.1016/0092-8674(80)90177-4. [DOI] [PubMed] [Google Scholar]
- Hallberg R. L., Bruns P. J. Ribosome biosynthesis in Tetrahymena pyriformis. Regulation in response to nutritional changes. J Cell Biol. 1976 Nov;71(2):383–394. doi: 10.1083/jcb.71.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallberg R. L., Wilson P. G., Sutton C. Regulation of ribosome phosphorylation and antibiotic sensitivity in Tetrahymena thermophila: A correlation. Cell. 1981 Oct;26(1 Pt 1):47–56. doi: 10.1016/0092-8674(81)90032-5. [DOI] [PubMed] [Google Scholar]
- Kumar A., Warner J. R. Characterization of ribosomal precursor particles from HeLa cell nucleoli. J Mol Biol. 1972 Jan 28;63(2):233–246. doi: 10.1016/0022-2836(72)90372-5. [DOI] [PubMed] [Google Scholar]
- Nanney D L, Dubert J M. The Genetics of the H Serotype System in Variety 1 of Tetrahymena Pyriformis. Genetics. 1960 Oct;45(10):1335–1349. doi: 10.1093/genetics/45.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen P. J., Duncan R., McConkey E. H. Phosphorylation of ribosomal protein S6. Relationship to protein synthesis in HeLa cells. Eur J Biochem. 1981 Dec;120(3):523–527. doi: 10.1111/j.1432-1033.1981.tb05731.x. [DOI] [PubMed] [Google Scholar]
- Orias E., Bruns P. J. Induction and isolation of mutants in Tetrahymena. Methods Cell Biol. 1976;13:247–282. [PubMed] [Google Scholar]
- Palmiter R. D. Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell. 1975 Mar;4(3):189–189. doi: 10.1016/0092-8674(75)90167-1. [DOI] [PubMed] [Google Scholar]
- Storti R. V., Scott M. P., Rich A., Pardue M. L. Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell. 1980 Dec;22(3):825–834. doi: 10.1016/0092-8674(80)90559-0. [DOI] [PubMed] [Google Scholar]
- Stöcklein W., Piepersberg W. Binding of cycloheximide to ribosomes from wild-type and mutant strains of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1980 Dec;18(6):863–867. doi: 10.1128/aac.18.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton C. A., Ares M., Jr, Hallberg R. L. Cycloheximide resistance can be mediated through either ribosomal subunit. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3158–3162. doi: 10.1073/pnas.75.7.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton C. A., Hallberg R. L. Ribosome biosynthesis in Tetrahymena thermophila. III. Regulation of ribosomal RNA degradation in growing and growth arrested cells. J Cell Physiol. 1979 Nov;101(2):349–358. doi: 10.1002/jcp.1041010214. [DOI] [PubMed] [Google Scholar]
- Thomas G., Thomas G., Luther H. Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5712–5716. doi: 10.1073/pnas.78.9.5712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wool I. G. The structure and function of eukaryotic ribosomes. Annu Rev Biochem. 1979;48:719–754. doi: 10.1146/annurev.bi.48.070179.003443. [DOI] [PubMed] [Google Scholar]