Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1983 Apr;3(4):523–538. doi: 10.1128/mcb.3.4.523

Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor.

R S Kerbel, A E Lagarde, J W Dennis, T P Donaghue
PMCID: PMC368568  PMID: 6687920

Abstract

Previous studies demonstrated that growth in DBA/2 mice of MDW4, a wheat germ agglutinin-resistant (WGAr) mutant of the highly metastatic MDAY-D2 DBA/2 mouse tumor, led to the emergence of WGA-sensitive (WGAs) revertants having higher ploidy levels at the site of inoculation as well as at distant visceral metastases. The results implied that MDW4 was nonmetastatic but progressed to become metastatic in vivo only after a cellular change took place which was accompanied by extinction of the WGAr phenotype and acquisition of a higher number of chromosomes. Results presented here provide strong and direct evidence for the underlying mechanism being spontaneous cell fusion in vivo between the MDW4 (WGAr) tumor cells and normal host cells, at least some of which are of bone marrow origin. Thus, growth of the H-2d MDW4 tumor cells in (C3H X DBA/2)F1 (H-2k X H-2d) or (C57BL/6 X DBA/2)F1 (H-2b X H-2d) mice led to the appearance of WGAs revertants bearing the H-2k or H-2b major histocompatibility complex antigens associated with the C3H or C57BL/6 parental strains, respectively. Similarly, WGAs revertants of MDW4 were found to express H-2k antigens after growth in CBA/HT6T6 (H-2k) leads to DBA/2 bone marrow radiation chimeras. Attempts to mimic the in vivo hybridization process were successful in that in vitro somatic cell fusion between an ouabain-resistant (OuaR), 6-thioguanine-resistant (Thgr) derivative of the MDW4 mutant and either normal bone marrow or spleen cells resulted in loss of the WGAr phenotype in the hybrids (thus showing its recessive character) and increased malignant properties in vivo. An analysis of spontaneous frequencies of re-expression of various drug resistance genetic markers in several hybrid metastatic cells was also consistent with chromosome segregation of the sensitive alleles. The results show that tumor progression and the emergence of metastatic cell variants could arise as a consequence of tumor X host cell fusion followed by chromosome segregation. We also discuss the possibility that this type of event may normally be a very rare one during the growth of tumors, the frequency of which can be artificially amplified by the use of certain classes of lectin-resistant mutants carrying particular cell surface alterations.

Full text

PDF
523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkin N. B. Premature chromosome condensation in carcinoma of the bladder: presumptive evidence for fusion of normal and malignant cells. Cytogenet Cell Genet. 1979;23(3):217–219. doi: 10.1159/000131329. [DOI] [PubMed] [Google Scholar]
  2. Ber R., Wiener F., Fenyö E. M. Proof of in vivo fusion of murine tumor cells with host cells by universal fusers. J Natl Cancer Inst. 1978 Apr;60(4):931–933. doi: 10.1093/jnci/60.4.931. [DOI] [PubMed] [Google Scholar]
  3. Beutler E., Collins Z., Irwin L. E. Value of genetic variants of glucose-6-phosphate dehydrogenase in tracing the origin of malignant tumors. N Engl J Med. 1967 Feb 16;276(7):389–391. doi: 10.1056/NEJM196702162760706. [DOI] [PubMed] [Google Scholar]
  4. Bramwell M. E., Harris H. An abnormal membrane glycoprotein associated with malignancy in a wide range of different tumours. Proc R Soc Lond B Biol Sci. 1978 Apr 13;201(1142):87–106. doi: 10.1098/rspb.1978.0034. [DOI] [PubMed] [Google Scholar]
  5. Branscomb L. M. National Science Foundation budgets: fiscal years 1982, 1982, and beyond. Science. 1981 May 1;212(4494):514–516. doi: 10.1126/science.7209546. [DOI] [PubMed] [Google Scholar]
  6. Campbell C. E., Worton R. G. Segregation of recessive phenotypes in somatic cell hybrids: role of mitotic recombination, gene inactivation, and chromosome nondisjunction. Mol Cell Biol. 1981 Apr;1(4):336–346. doi: 10.1128/mcb.1.4.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chasin L. A. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J Cell Physiol. 1973 Oct;82(2):299–307. doi: 10.1002/jcp.1040820218. [DOI] [PubMed] [Google Scholar]
  8. Chasin L. A., Urlaub G. Chromosome-wide event accompanies the expression of recessive mutations in tetraploid cells. Science. 1975 Mar 21;187(4181):1091–1093. doi: 10.1126/science.1167702. [DOI] [PubMed] [Google Scholar]
  9. De Baetselier P., Gorelik E., Eshhar Z., Ron Y., Katzav S., Feldman M., Segal S. Metastatic properties conferred on nonmetastatic tumors by hybridization of spleen B-lymphocytes with plasmacytoma cells. J Natl Cancer Inst. 1981 Nov;67(5):1079–1087. [PubMed] [Google Scholar]
  10. Dennis J. W., Donaghue T. P., Kerbel R. S. An examination of tumor antigen loss in spontaneous metastases. Invasion Metastasis. 1981;1(2):111–125. [PubMed] [Google Scholar]
  11. Dennis J. W., Kerbel R. S. Characterization of a deficiency in fucose metabolism in lectin-resistant variants of a murine tumor showing altered tumorigenic and metastatic capacities in vivo. Cancer Res. 1981 Jan;41(1):98–104. [PubMed] [Google Scholar]
  12. Dennis J., Donaghue T., Florian M., Kerbel R. S. Apparent reversion of stable in vitro genetic markers detected in tumour cells from spontaneous metastases. Nature. 1981 Jul 16;292(5820):242–245. doi: 10.1038/292242a0. [DOI] [PubMed] [Google Scholar]
  13. Engel E., McGee B. J., Harris H. Recombination and segregation in somatic cell hybrids. Nature. 1969 Jul 12;223(5202):152–155. doi: 10.1038/223152a0. [DOI] [PubMed] [Google Scholar]
  14. Evans E. P., Burtenshaw M. D., Brown B. B., Hennion R., Harris H. The analysis of malignancy by cell fusion. IX. Re-examination and clarification of the cytogenetic problem. J Cell Sci. 1982 Aug;56:113–130. doi: 10.1242/jcs.56.1.113. [DOI] [PubMed] [Google Scholar]
  15. Farrell S. A., Worton R. G. Chromosome loss is responsible for segregation at the HPRT locus in Chinese hamster cell hybrids. Somatic Cell Genet. 1977 Sep;3(5):539–551. doi: 10.1007/BF01539124. [DOI] [PubMed] [Google Scholar]
  16. Fenyö E. M., Wiener F., Klein G., Harris H. Selection of tumor-host cell hybrids from polyoma virus- and methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1973 Dec;51(6):1865–1875. doi: 10.1093/jnci/51.6.1865. [DOI] [PubMed] [Google Scholar]
  17. Finne J., Tao T. W., Burger M. M. Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res. 1980 Jul;40(7):2580–2587. [PubMed] [Google Scholar]
  18. Friedman J. M., Fialkow P. J. Cell marker studies of human tumorigenesis. Transplant Rev. 1976;28:17–33. doi: 10.1111/j.1600-065x.1976.tb00190.x. [DOI] [PubMed] [Google Scholar]
  19. Goldenberg D. M., Bhan R. D., Pavia R. A. In vivo human-hamster somatic cell fusion indicated by glucose 6-phosphate dehydrogenase and lactate dehydrogenase profiles. Cancer Res. 1971 Aug;31(8):1148–1152. [PubMed] [Google Scholar]
  20. Goldenberg D. M., Pavia R. A., Tsao M. C. In vivo hybridisation of human tumour and normal hamster cells. Nature. 1974 Aug 23;250(5468):649–651. doi: 10.1038/250649a0. [DOI] [PubMed] [Google Scholar]
  21. Gupta R. S., Chan D. Y., Siminovitch L. Evidence for functional hemizygosity at the Emtr locus in CHO cells through segregation analysis. Cell. 1978 Aug;14(4):1007–1013. doi: 10.1016/0092-8674(78)90354-9. [DOI] [PubMed] [Google Scholar]
  22. Gupta R. S. Random segretation of multiple genetic markers from CHO-CHO hybrids: evidence for random distribution of functional hemizygosity in the genome. Somatic Cell Genet. 1980 Jan;6(1):115–125. doi: 10.1007/BF01538700. [DOI] [PubMed] [Google Scholar]
  23. Gupta R. S., Siminovitch L. Genetic markers for quantitative mutagenesis studies in Chinese hamster ovary cells: characteristics of some recently developed selective systems. Mutat Res. 1980 Jan;69(1):113–126. doi: 10.1016/0027-5107(80)90181-5. [DOI] [PubMed] [Google Scholar]
  24. Halaban R., Nordlund J., Francke U., Moellmann G., Eisenstadt J. M. Supermelanotic hybrids derived from mouse melanomas and normal mouse cells. Somatic Cell Genet. 1980 Jan;6(1):29–44. doi: 10.1007/BF01538694. [DOI] [PubMed] [Google Scholar]
  25. Harris H. Cell fusion and the analysis of malignancy. Proc R Soc Lond B Biol Sci. 1971 Oct 12;179(1054):1–20. doi: 10.1098/rspb.1971.0078. [DOI] [PubMed] [Google Scholar]
  26. Holczinger L., Turi G., Somfai-Relle S. Heterogeneity of tumor cell populations. Antibiot Chemother (1971) 1980;28:115–119. doi: 10.1159/000386068. [DOI] [PubMed] [Google Scholar]
  27. Isaacs J. T., Wake N., Coffey D. S., Sandberg A. A. Genetic instability coupled to clonal selection as a mechanism for tumor progression in the Dunning R-3327 rat prostatic adenocarcinoma system. Cancer Res. 1982 Jun;42(6):2353–2371. [PubMed] [Google Scholar]
  28. Jami J., Ritz E. Nonmalignancy of hybrids derived from two mouse malignant cells. II. Analysis of malignancy of LM (TK-) Cl 1D parental cells. J Natl Cancer Inst. 1975 Jan;54(1):117–122. doi: 10.1093/jnci/54.1.117. [DOI] [PubMed] [Google Scholar]
  29. Kerbel R. S., Dennis J. W., Largarde A. E., Frost P. Tumor progression in metastasis: an experimental approach using lectin resistant tumor variants. Cancer Metastasis Rev. 1982;1(2):99–140. doi: 10.1007/BF00048223. [DOI] [PubMed] [Google Scholar]
  30. Kerbel R. S., Florian M., Man M. S., Dennis J., McKenzie I. F. Carcinogenicity of tumor cell populations: origin of a putative H-2 isoantigenic loss variant tumor. J Natl Cancer Inst. 1980 May;64(5):1221–1230. [PubMed] [Google Scholar]
  31. Kerbel R. S. Implications of immunological heterogeneity of tumours. Nature. 1979 Aug 2;280(5721):358–360. doi: 10.1038/280358a0. [DOI] [PubMed] [Google Scholar]
  32. Kerbel R. S., Twiddy R. R., Robertson D. M. Induction of a tumor with greatly increased metastatic growth potential by injection of cells from a low-metastatic H-2 heterozygous tumor cell line into an H-2 incompatible parental strain. Int J Cancer. 1978 Nov 15;22(5):583–594. doi: 10.1002/ijc.2910220513. [DOI] [PubMed] [Google Scholar]
  33. Klein G., Bregula U., Wiener F., Harris H. The analysis of malignancy by cell fusion. I. Hybrids between tumour cells and L cell derivatives. J Cell Sci. 1971 May;8(3):659–672. doi: 10.1242/jcs.8.3.659. [DOI] [PubMed] [Google Scholar]
  34. Klein G., Klein E. Are methylcholanthrene-induced sarcoma-associated, rejection-inducing (TSTA) antigens, modified forms of H-2 or linked determinants? Int J Cancer. 1975 Jun 15;15(6):879–887. doi: 10.1002/ijc.2910150603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Klein G. Tumor-associated antigens in H-2 hemizygous isoantigenic variants of a somatic cell hybrid, derived from the fusion of a 3-methylcholanthrene-induced sarcoma and a mammary carcinoma. J Natl Cancer Inst. 1977 Feb;58(2):383–386. doi: 10.1093/jnci/58.2.383. [DOI] [PubMed] [Google Scholar]
  36. Lala P. K., Santer V., Rahil K. S. Spontaneous fusion between Ehrlich ascites tumor cells and host cells in vivo: kinetics of hybridization, and concurrent changes in the histocompatiblity profile of the tumor after propagation in different host strains. Eur J Cancer. 1980 Apr;16(4):487–510. doi: 10.1016/0014-2964(80)90229-7. [DOI] [PubMed] [Google Scholar]
  37. Mankovitz R., Buchwald M., Baker R. M. Isolation of ouabain-resistant human diploid fibroblasts. Cell. 1974 Nov;3(3):221–226. doi: 10.1016/0092-8674(74)90135-4. [DOI] [PubMed] [Google Scholar]
  38. Marin G. Selection of chromosomal segregants in a "hybrid" line of Syrian hamster fibroblasts. Exp Cell Res. 1969 Sep;57(1):29–36. doi: 10.1016/0014-4827(69)90363-2. [DOI] [PubMed] [Google Scholar]
  39. Martin G. M., Sprague C. A. Parasexual cycle in cultivated human somatic cells. Science. 1969 Nov 7;166(3906):761–763. doi: 10.1126/science.166.3906.761. [DOI] [PubMed] [Google Scholar]
  40. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  41. Poste G., Fidler I. J. The pathogenesis of cancer metastasis. Nature. 1980 Jan 10;283(5743):139–146. doi: 10.1038/283139a0. [DOI] [PubMed] [Google Scholar]
  42. Rajan T. V., Bloom B. R., Nathenson S. G. Regulatory variants for the expression of H-2 antigens. II. Level of discrimination of cell-mediated cytolysis. J Natl Cancer Inst. 1976 Jun;56(6):1229–1231. doi: 10.1093/jnci/56.6.1229. [DOI] [PubMed] [Google Scholar]
  43. Reading C. L., Belloni P. N., Nicolson G. L. Selection and in vivo properties of lectin-attachment variants of malignant murine lymphosarcoma cell lines. J Natl Cancer Inst. 1980 May;64(5):1241–1249. [PubMed] [Google Scholar]
  44. Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
  45. Smith J. W., Townsend D. E., Sparkes R. S. Genetic variants of glucose-6-phosphate dehydrogenase in the study of carcinoma of the cervix. Cancer. 1971 Aug;28(2):529–532. doi: 10.1002/1097-0142(197108)28:2<529::aid-cncr2820280235>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  46. Smith J. W., Townsend D. E., Sparkes R. S. Glucose-6-phosphate dehydrogenase polymorphism: a valuable tool to study tumor origin. Clin Genet. 1971;2(3):160–162. doi: 10.1111/j.1399-0004.1971.tb00272.x. [DOI] [PubMed] [Google Scholar]
  47. Stanbridge E. J. Mycoplasma detection-an obligation to scientific accuracy. Isr J Med Sci. 1981 Jul;17(7):563–568. [PubMed] [Google Scholar]
  48. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  49. Stanley P., Caillibot V., Siminovitch L. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genet. 1975 Jan;1(1):3–26. doi: 10.1007/BF01538729. [DOI] [PubMed] [Google Scholar]
  50. Stanley P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]
  52. Stanley P., Sudo T., Carver J. P. Differential involvement of cell surface sialic acid residues in wheat germ agglutinin binding to parental and wheat germ agglutinin-resistant Chinese hamster ovary cells. J Cell Biol. 1980 Apr;85(1):60–69. doi: 10.1083/jcb.85.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Szpirer C., Szpirer J., Wiener F. The expression of differentiated functions in somatic cell hybrids: retention and activation of C3 production. Cell Differ. 1976 Jul;5(2):139–149. doi: 10.1016/0045-6039(76)90007-5. [DOI] [PubMed] [Google Scholar]
  54. Tao T. W., Burger M. M. Non-metastasising variants selected from metastasising melanoma cells. Nature. 1977 Dec 1;270(5636):437–438. doi: 10.1038/270437a0. [DOI] [PubMed] [Google Scholar]
  55. Trowbridge I. S., Hyman R., Ferson T., Mazauskas C. Expression of Thy-1 glycoprotein on lectin-resistant lymphoma cell lines. Eur J Immunol. 1978 Oct;8(10):716–723. doi: 10.1002/eji.1830081009. [DOI] [PubMed] [Google Scholar]
  56. Warner T. F. Cell hybridizaiton: an explanation for the phenotypic diversity of certain tumours. Med Hypotheses. 1975 Jan-Feb;1(1):51–57. doi: 10.1016/0306-9877(75)90042-0. [DOI] [PubMed] [Google Scholar]
  57. Wiener F., Fenyö E. M., Klein G., Davies A. J. Tumor-host cell hybrids in radiochimeras reconstituted with bone marrow and thymus grafts. Somatic Cell Genet. 1976 Mar;2(2):81–92. doi: 10.1007/BF01542623. [DOI] [PubMed] [Google Scholar]
  58. Worton R. G., Duff C., Campbell C. E. Marker segregation without chromosome loss at the emt locus in Chinese hamster cell hybrids. Somatic Cell Genet. 1980 Mar;6(2):199–213. doi: 10.1007/BF01538796. [DOI] [PubMed] [Google Scholar]
  59. Worton R. G., Duff C. Karyotyping. Methods Enzymol. 1979;58:322–344. doi: 10.1016/s0076-6879(79)58148-8. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES