Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1983 Apr;3(4):613–622. doi: 10.1128/mcb.3.4.613

Compartmentation of uracil in Euglena gracilis.

C H Wasternack
PMCID: PMC368577  PMID: 6406837

Abstract

Compartmentation of uracil in the flagellate Euglena gracilis was studied by tracer-kinetic experiments. Lag times in the equilibration of exogenously given and intracellularly present uracil before linear labeling of catabolic and anabolic products was determined to estimate the size of its metabolically active pool. This pool operates in the incorporation and degradation of uracil. There were the same lag times in forming both final products when measured in parallel and when measured after preloading with pyrimidines, in different cell strains, and under various environmental conditions. The amount of the metabolically active uracil pool, estimated as 11 pmol/10(7) heterotrophically growing cells, decreased to almost zero during light-induced RNA synthesis and could be changed by preloading with uracil or thymine. Besides this metabolic pool, cells may contain large amounts of uracil in a membrane-enclosed storage compartment (up to 12 nmol/10(7) cells). This is metabolically inert, but may be mobilized by nitrogen-carbon starvation. The role of uracil compartmentation in this metabolically flexible organism is discussed.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen D., Schiff J. A. Events surrounding the early development of Euglena chloroplasts. Photoregulation of the transcription of chloroplastic and cytoplasmic ribosomal RNAs. Arch Biochem Biophys. 1976 Nov;177(1):201–216. doi: 10.1016/0003-9861(76)90430-6. [DOI] [PubMed] [Google Scholar]
  2. Davis R. H., Bowman B. J., Weiss R. L. Intracellular compartmentation and transport of metabolites. J Supramol Struct. 1978;9(4):473–488. doi: 10.1002/jss.400090403. [DOI] [PubMed] [Google Scholar]
  3. EDELMAN M., SCHIFF J. A., EPSTEIN H. T. STUDIES OF CHLOROPLAST DEVELOPMENT IN EUGLENA. XII. TWO TYPES OF SATELLITE DNA. J Mol Biol. 1965 Apr;11:769–774. doi: 10.1016/s0022-2836(65)80034-1. [DOI] [PubMed] [Google Scholar]
  4. FINK R. M., MCGAUGHEY C., CLINE R. E., FINK K. Metabolism of intermediate pyrimidine reduction products in vitro. J Biol Chem. 1956 Jan;218(1):1–7. [PubMed] [Google Scholar]
  5. Hod Y., Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976 Jul 25;251(14):4458–4457. [PubMed] [Google Scholar]
  6. KEMPNER E. S., COWIE D. B. Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim Biophys Acta. 1960 Aug 26;42:401–408. doi: 10.1016/0006-3002(60)90817-9. [DOI] [PubMed] [Google Scholar]
  7. Karlin J. N., Bowman B. J., Davis R. H. Compartmental behavior of ornithine in Neurospora crassa. J Biol Chem. 1976 Jul 10;251(13):3948–3955. [PubMed] [Google Scholar]
  8. Khairallah E. A., Airhart J., Bruno M. K., Puchalsky D., Khairallah L. Implications of amino acid compartmentation for the determination of rates of protein catabolism in livers in meal fed rats. Acta Biol Med Ger. 1977;36(11-12):1735–1745. [PubMed] [Google Scholar]
  9. Krauss G., Reinbothe H. Purification and fractionation of free nucleotides from Euglena gracilis Z by a combined procedure of ligand-exchange and anion-exchange gel chromatography. Anal Biochem. 1977 Mar;78(1):1–8. doi: 10.1016/0003-2697(77)90002-1. [DOI] [PubMed] [Google Scholar]
  10. Kuebbing D., Werner R. A model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3333–3336. doi: 10.1073/pnas.72.9.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nover L., Lerbs W., Müller W., Luckner M. Channelling of exogenous phenylalanine to the sites of storage and the sites of alkaloid and protein biosynthesis in Penicillium cyclopium. Biochim Biophys Acta. 1979 May 1;584(2):270–283. doi: 10.1016/0304-4165(79)90272-1. [DOI] [PubMed] [Google Scholar]
  12. Pato M. L. Alterations of deoxyribonucleoside triphosphate pools in Escherichia coli: effects on deoxyribonucleic acid replication and evidence for compartmentation. J Bacteriol. 1979 Nov;140(2):518–524. doi: 10.1128/jb.140.2.518-524.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shehata T. E., Kempner E. S. Growth and cell volume of Euglena gracilis in different media. Appl Environ Microbiol. 1977 Apr;33(4):874–877. doi: 10.1128/aem.33.4.874-877.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vaughn L. E., Davis R. H. Purification of vacuoles from Neurospora crassa. Mol Cell Biol. 1981 Sep;1(9):797–806. doi: 10.1128/mcb.1.9.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wasternack C. H. Uptake and incorporation of pyrimidines in Euglena gracilis. Arch Microbiol. 1976 Aug;109(1-2):167–174. doi: 10.1007/BF00425131. [DOI] [PubMed] [Google Scholar]
  16. Wiegers U., Kramer G., Klapproth K., Hilz H. Separate pyrimidine-nucleotide pools for messenger-RNA and ribosomal-RNA synthesis in HeLa S3 cells. Eur J Biochem. 1976 May 1;64(2):535–540. doi: 10.1111/j.1432-1033.1976.tb10333.x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES