Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1984 Apr;4(4):779–790. doi: 10.1128/mcb.4.4.779

Tubulin heterogeneity in the trypanosome Crithidia fasciculata.

D G Russell, D Miller, K Gull
PMCID: PMC368797  PMID: 6717441

Abstract

The interphase cell of Crithidia fasciculata has three discrete tubulin populations: the subpellicular microtubules, the axonemal microtubules, and the nonpolymerized cytoplasmic pool protein. These three tubulin populations were independently and selectively purified, yielding, in each case, microtubule protein capable of self-assembly. All three preparations polymerized to form ribbons and sheets rather than the more usual microtubular structures. Analyses of the tubulin by two-dimensional polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping indicated that the beta-tubulin complex remained constant regardless of source but that some heterogeneity was present in the alpha subunit. Cytoplasmic pool alpha tubulins (alpha 1/alpha 2) were the only alpha isotypes in the cytoplasm and also formed most of the alpha tubulin species in the pellicular fraction. Flagellar alpha tubulin (alpha 3) was the sole alpha isotype in the flagella; it appeared in small amounts in the pellicular fraction but was completely absent from the cytoplasm. In vitro translation products from polyadenylated RNA from C. fasciculata were also examined by two-dimensional polyacrylamide gel electrophoresis and possessed a protein corresponding to alpha 1/alpha 2 tubulin but lacked any alpha 3 tubulin. The alpha 3 polypeptide arose from a post-translational modification of a precursor polypeptide not identifiable by two-dimensional polyacrylamide gel electrophoresis as alpha 3. Peptide mapping data indicated that cytoplasmic alpha tubulin is the most likely precursor. These results demonstrate alpha-tubulin heterogeneity in this organism and also how close the relationship between flagellar and cytoskeletal tubulins can be among lower eucaryotes.

Full text

PDF
779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bibring T., Baxandall J., Denslow S., Walker B. Heterogeneity of the alpha subunit of tubulin and the variability of tubulin within a single organism. J Cell Biol. 1976 May;69(2):301–312. doi: 10.1083/jcb.69.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunke K. J., Collis P. S., Weeks D. P. Post-translational modification of tubulin dependent on organelle assembly. Nature. 1982 Jun 10;297(5866):516–518. doi: 10.1038/297516a0. [DOI] [PubMed] [Google Scholar]
  3. Clayton L., Quinlan R. A., Roobol A., Pogson C. I., Gull K. A comparison of tubulins from mammalian brain and Physarum polycephalum using SDS-polyacrylamide gel electrophorsis and peptide mapping. FEBS Lett. 1980 Jun 30;115(2):301–305. doi: 10.1016/0014-5793(80)81192-6. [DOI] [PubMed] [Google Scholar]
  4. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  5. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  6. Cowan N. J., Wilde C. D., Chow L. T., Wefald F. C. Structural variation among human beta-tubulin genes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4877–4881. doi: 10.1073/pnas.78.8.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawson P. J., Gutteridge W. E., Gull K. Purification and characterisation of tubulin from the parasitic nematode, Ascaridia galli. Mol Biochem Parasitol. 1983 Mar;7(3):267–277. doi: 10.1016/0166-6851(83)90026-9. [DOI] [PubMed] [Google Scholar]
  8. De Souza W., Meyer H. On the fine structure of the nucleus in Trypanosoma cruzi in tissue culture forms. Spindle fibers in the dividing nucleus. J Protozool. 1974 Feb;21(1):48–52. doi: 10.1111/j.1550-7408.1974.tb03615.x. [DOI] [PubMed] [Google Scholar]
  9. Farrell K. W. Purification and reassembly of tubulin from outer doublet microtubules. Methods Cell Biol. 1982;24:61–78. doi: 10.1016/s0091-679x(08)60648-2. [DOI] [PubMed] [Google Scholar]
  10. Farrell K. W., Wilson L. Microtubule reassembly in vitro of Strongylocentrotus purpuratus sperm tail outer doublet tubulin. J Mol Biol. 1978 May 25;121(3):393–410. doi: 10.1016/0022-2836(78)90371-6. [DOI] [PubMed] [Google Scholar]
  11. Fong D., Chang K. P. Tubulin biosynthesis in the developmental cycle of a parasitic protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7624–7628. doi: 10.1073/pnas.78.12.7624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutteridge W. E., McCormack J. J., Jr, Jaffe J. J. Presence and properties of dihydrofolate reductases within the genus Crithidia. Biochim Biophys Acta. 1969 May 27;178(3):453–458. doi: 10.1016/0005-2744(69)90214-9. [DOI] [PubMed] [Google Scholar]
  13. Kemphues K. J., Kaufman T. C., Raff R. A., Raff E. C. The testis-specific beta-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell. 1982 Dec;31(3 Pt 2):655–670. doi: 10.1016/0092-8674(82)90321-x. [DOI] [PubMed] [Google Scholar]
  14. Kilmartin J. V. Purification of yeast tubulin by self-assembly in vitro. Biochemistry. 1981 Jun 9;20(12):3629–3633. doi: 10.1021/bi00515a050. [DOI] [PubMed] [Google Scholar]
  15. L'Hernault S. W., Rosenbaum J. L. Chlamydomonas alpha-tubulin is posttranslationally modified in the flagella during flagellar assembly. J Cell Biol. 1983 Jul;97(1):258–263. doi: 10.1083/jcb.97.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Landfear S. M., McMahon-Pratt D., Wirth D. F. Tandem arrangement of tubulin genes in the protozoan parasite Leishmania enriettii. Mol Cell Biol. 1983 Jun;3(6):1070–1076. doi: 10.1128/mcb.3.6.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee J. C., Timasheff S. N. The reconstitution of microtubules from purified calf brain tubulin. Biochemistry. 1975 Nov 18;14(23):5183–5187. doi: 10.1021/bi00694a025. [DOI] [PubMed] [Google Scholar]
  19. Lefebvre P. A., Silflow C. D., Wieben E. D., Rosenbaum J. L. Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella. Cell. 1980 Jun;20(2):469–477. doi: 10.1016/0092-8674(80)90633-9. [DOI] [PubMed] [Google Scholar]
  20. Linck R. W., Langevin G. L. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol. 1981 May;89(2):323–337. doi: 10.1083/jcb.89.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Little M., Ludueña R. F., Keenan R., Asnes C. F. Tubulin evolution: two major types of alpha-tubulin. J Mol Evol. 1982;19(1):80–86. doi: 10.1007/BF02100226. [DOI] [PubMed] [Google Scholar]
  22. Little M., Ludueña R. F., Langford G. M., Asnes C. F., Farrell K. Comparison of proteolytic cleavage patterns of alpha-tubulins and beta-tubulins from taxonomically distant species. J Mol Biol. 1981 Jun 15;149(1):95–107. doi: 10.1016/0022-2836(81)90262-x. [DOI] [PubMed] [Google Scholar]
  23. Maekawa S., Sakai H. Characterization and in vitro polymerization of Tetrahymena tubulin. J Biochem. 1978 Apr;83(4):1065–1075. doi: 10.1093/oxfordjournals.jbchem.a131995. [DOI] [PubMed] [Google Scholar]
  24. McKeithan T. W., Lefebvre P. A., Silflow C. D., Rosenbaum J. L. Multiple forms of tubulin in Polytomella and Chlamydomonas: evidence for a precursor of flagellar alpha-tubulin. J Cell Biol. 1983 Apr;96(4):1056–1063. doi: 10.1083/jcb.96.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKeithan T. W., Rosenbaum J. L. Multiple forms of tubulin in the cytoskeletal and flagellar microtubules of Polytomella. J Cell Biol. 1981 Nov;91(2 Pt 1):352–360. doi: 10.1083/jcb.91.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Minami S. A., Collis P. S., Young E. E., Weeks D. P. Tubulin induction in C. reinhardii: requirement for tubulin mRNA synthesis. Cell. 1981 Apr;24(1):89–95. doi: 10.1016/0092-8674(81)90504-3. [DOI] [PubMed] [Google Scholar]
  27. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  28. Oakley B. R., Morris N. R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell. 1981 Jun;24(3):837–845. doi: 10.1016/0092-8674(81)90109-4. [DOI] [PubMed] [Google Scholar]
  29. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  30. Roobol A., Pogson C. I., Gull K. In vitro assembly of microtubule proteins from myxamoebae of Physarum polycephalum. Exp Cell Res. 1980 Nov;130(1):203–215. doi: 10.1016/0014-4827(80)90057-9. [DOI] [PubMed] [Google Scholar]
  31. Russell D. G., Newsam R. J., Palmer G. C., Gull K. Structural and biochemical characterisation of the paraflagellar rod of Crithidia fasciculata. Eur J Cell Biol. 1983 Mar;30(1):137–143. [PubMed] [Google Scholar]
  32. Silflow C. D., Rosenbaum J. L. Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell. 1981 Apr;24(1):81–88. doi: 10.1016/0092-8674(81)90503-1. [DOI] [PubMed] [Google Scholar]
  33. Stearns M. E., Brown D. L. Purification of cytoplasmic tubulin and microtubule organizing center proteins functioning in microtubule initiation from the alga Polytomella. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5745–5749. doi: 10.1073/pnas.76.11.5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  35. Turnock G., Morris S. R., Dee J. A comparison of the proteins of the amoebal and plasmodial phases of the slime mould, Physarum polycephalum. Eur J Biochem. 1981 Apr;115(3):533–538. doi: 10.1111/j.1432-1033.1981.tb06235.x. [DOI] [PubMed] [Google Scholar]
  36. Vickerman K., Preston T. M. Spindle microtubules in the dividing nuclei of trypanosomes. J Cell Sci. 1970 Mar;6(2):365–383. doi: 10.1242/jcs.6.2.365. [DOI] [PubMed] [Google Scholar]
  37. Wallach M., Fong D., Chang K. P. Post-transcriptional control of tubulin biosynthesis during leishmanial differentiation. Nature. 1982 Oct 14;299(5884):650–652. doi: 10.1038/299650a0. [DOI] [PubMed] [Google Scholar]
  38. Waxman P. G., del Campo A. A., Lowe M. C., Hamel E. Induction of polymerization of purified tubulin by sulfonate buffers. Marked differences between 4-morpholineethanesulfonate (Mes) and 1,4-piperazineethanesulfonate (Pipes). Eur J Biochem. 1981 Nov;120(1):129–136. doi: 10.1111/j.1432-1033.1981.tb05679.x. [DOI] [PubMed] [Google Scholar]
  39. Weeks D. P., Collis P. S. Induction of microtubule protein synthesis in Chlamydomonas reinhardi during flagellar regeneration. Cell. 1976 Sep;9(1):15–27. doi: 10.1016/0092-8674(76)90048-9. [DOI] [PubMed] [Google Scholar]
  40. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES