Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1984 Aug;4(8):1597–1604. doi: 10.1128/mcb.4.8.1597

Isolation and characterization of revertants from four different classes of aryl hydrocarbon hydroxylase-deficient hepa-1 mutants.

J R Van Gurp, O Hankinson
PMCID: PMC368953  PMID: 6493230

Abstract

Revertants were selected from aryl hydrocarbon hydroxylase (AHH)-deficient recessive mutants belonging to three complementation groups and from a dominant mutant of the Hepa-1 cell line. The recessive mutants had low spontaneous reversion frequencies (less than 4 X 10(-7] that were increased by mutagenesis. The majority of these revertants also had reacquired only partial AHH activity. Revertants of group A mutants were identical to the wild type with respect to both in vivo and in vitro enzyme stability and the Km for the substrate, benzo [alpha]pyrene, and therefore failed to provide evidence that gene A is the AHH structural gene. Group B and group C mutants are defective in the functioning of the Ah receptor required for AHH induction. Revertants of these groups were normal with respect to in vivo temperature sensitivity for AHH induction and for the 50% effective dose for the inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and thus provided no evidence that the B and C genes code for components of the receptor. Two rare group C revertants possessed AHH activity in the absence of induction. The phenotype of one of these was shown to be recessive to the wild type. Spontaneous revertants of the dominant mutant occurred at a frequency 300-fold greater than those of the recessive mutants, and this frequency was not increased by mutagenesis. These revertants all displayed complete restoration of AHH activity to wild type levels. These observations and the results from cell hybridization studies suggest that the dominant revertants arose by a high frequency event leading to functional elimination of the dominant mutation.

Full text

PDF
1597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayusawa D., Iwata K., Seno T., Koyama H. Conditional thymidine auxotrophic mutants of mouse FM3A cells due to thermosensitive thymidylate synthase and their prototrophic revertants. J Biol Chem. 1981 Dec 10;256(23):12005–12012. [PubMed] [Google Scholar]
  2. Benedict W. F., Gielen J. E., Owens I. S., Niwa A., Bebert D. W. Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. IV. Stimulation of the enzyme activity in established cell lines derived from rat or mouse hepatoma and from normal rat liver. Biochem Pharmacol. 1973 Nov 1;22(21):2766–2769. doi: 10.1016/0006-2952(73)90138-x. [DOI] [PubMed] [Google Scholar]
  3. Bernhard H. P., Darlington G. J., Ruddle F. H. Expression of liver phenotypes in cultured mouse hepatoma cells: synthesis and secretion of serum albumin. Dev Biol. 1973 Nov;35(1):83–96. doi: 10.1016/0012-1606(73)90008-0. [DOI] [PubMed] [Google Scholar]
  4. Bradley W. E. Mutation at autosomal loci of Chinese hamster ovary cells: involvement of a high-frequency event silencing two linked alleles. Mol Cell Biol. 1983 Jul;3(7):1172–1181. doi: 10.1128/mcb.3.7.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duthu G. S., Hankinson O. The defects in all classes of aryl hydrocarbon hydroxylase-deficient mutant of mouse hepatoma line, Hepa-1, are restricted to activities catalyzed by cytochrome P-450. Cancer Lett. 1983 Oct;20(3):249–254. doi: 10.1016/0304-3835(83)90021-6. [DOI] [PubMed] [Google Scholar]
  6. Hankinson O. Dominant and recessive aryl hydrocarbon hydroxylase-deficient mutants of mouse hepatoma line, Hepa-1, and assignment of recessive mutants to three complementation groups. Somatic Cell Genet. 1983 Jul;9(4):497–514. doi: 10.1007/BF01543050. [DOI] [PubMed] [Google Scholar]
  7. Hankinson O. Evidence that Benzo(a) pyrene-resistant, aryl hydrocarbon hydroxylase-deficient variants of mouse hepatoma line, Hepa-1, are mutational in origin. Somatic Cell Genet. 1981 Jul;7(4):373–388. doi: 10.1007/BF01542983. [DOI] [PubMed] [Google Scholar]
  8. Hankinson O. Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proc Natl Acad Sci U S A. 1979 Jan;76(1):373–376. doi: 10.1073/pnas.76.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris M. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell. 1982 Jun;29(2):483–492. doi: 10.1016/0092-8674(82)90165-9. [DOI] [PubMed] [Google Scholar]
  10. Ingles C. J. Temperature-sensitive RNA polymerase II mutations in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):405–409. doi: 10.1073/pnas.75.1.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  12. Kruh G. D., Fenwick R. G., Jr, Caskey C. T. Structural analysis of mutant and revertant forms of Chinese hamster hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1981 Mar 25;256(6):2878–2886. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Legraverend C., Hannah R. R., Eisen H. J., Owens I. S., Nebert D. W., Hankinson O. Regulatory gene product of the Ah locus. Characterization of receptor mutants among mouse hepatoma clones. J Biol Chem. 1982 Jun 10;257(11):6402–6407. [PubMed] [Google Scholar]
  15. Miller A. G., Israel D., Whitlock J. P., Jr Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. J Biol Chem. 1983 Mar 25;258(6):3523–3527. [PubMed] [Google Scholar]
  16. Miller A. G., Whitlock J. P., Jr Efficient metabolism of benzo(a)pyrene at nanomolar concentrations by intact murine hepatoma cells. Cancer Res. 1982 Nov;42(11):4473–4478. [PubMed] [Google Scholar]
  17. Miller A. G., Whitlock J. P., Jr Novel variants in benzo(a)pyrene metabolism. Isolation by fluorescence-activated cell sorting. J Biol Chem. 1981 Mar 10;256(5):2433–2437. [PubMed] [Google Scholar]
  18. Nebert D. W., Gelboin H. V. Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J Biol Chem. 1968 Dec 10;243(23):6242–6249. [PubMed] [Google Scholar]
  19. Nebert D. W., Gelboin H. V. Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. II. Cellular responses during enzyme induction. J Biol Chem. 1968 Dec 10;243(23):6250–6261. [PubMed] [Google Scholar]
  20. Owens I. S., Nebert D. W. Aryl hydrocarbon hydroxylase induction in mammalian liver-derived cell cultures. Stimulation of "cytochrome P1-450-associated" enzyme activity by many inducing compounds. Mol Pharmacol. 1975 Jan;11(1):94–104. [PubMed] [Google Scholar]
  21. Poland A., Glover E. An estimate of the maximum in vivo covalent binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to rat liver protein, ribosomal RNA, and DNA. Cancer Res. 1979 Sep;39(9):3341–3344. [PubMed] [Google Scholar]
  22. Simon A. E., Taylor M. W., Bradley W. E., Thompson L. H. Model involving gene inactivation in the generation of autosomal recessive mutants in mammalian cells in culture. Mol Cell Biol. 1982 Sep;2(9):1126–1133. doi: 10.1128/mcb.2.9.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson L. H., Lofgren D. J., Adair G. M. Evidence for structural gene alterations affecting aminoacyl-tRNA synthetases in CHO cell mutants and revertants. Somatic Cell Genet. 1978 Jul;4(4):423–435. doi: 10.1007/BF01538864. [DOI] [PubMed] [Google Scholar]
  24. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Gurp J. R., Hankinson O. Single-step phototoxic selection procedure for isolating cells that possess aryl hydrocarbon hydroxylase. Cancer Res. 1983 Dec;43(12 Pt 1):6031–6038. [PubMed] [Google Scholar]
  26. Vinopal J. H., Casida J. E. Metabolic stability of 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin in mammalian liver microsomal systems and in living mice. Arch Environ Contam Toxicol. 1973 Jul;1(2):122–132. doi: 10.1007/BF01986002. [DOI] [PubMed] [Google Scholar]
  27. van Daalen Wetters T., Coffino P. Revertants of an S49 cell mutant that expresses altered cyclic AMP-dependent protein kinase. Mol Cell Biol. 1982 Oct;2(10):1229–1237. doi: 10.1128/mcb.2.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES