Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1984 Sep;4(9):1761–1768. doi: 10.1128/mcb.4.9.1761

Griseofulvin resistance mutation of Chinese hamster ovary cells that affects the apparent molecular weight of a congruent to 200,000-dalton protein.

R S Gupta
PMCID: PMC368984  PMID: 6493232

Abstract

A single-step griseofulvin-resistant mutant (GrsR-4) of CHO cells which exhibit very specific cross-resistance towards certain microtubule inhibitors showed the absence of a protein of molecular weight congruent to 200,000 (designated P5) and the concomitant presence of a new protein spot, M5, of lower molecular weight (Mr congruent to 180,000) which is not present in other cell lines. Peptide mapping studies showed that proteins P5 and M5 are related to each other and that M5 may be missing a peptide fragment present in P5. In GrsR-4 X GrsS cell hybrids, both P5 and M5 were present in equal amounts, which provided evidence against post-translation mechanisms in the origin of M5 and indicated that the GrsR-4 mutant most likely contains a nonsense mutation in the structural gene for protein P5, which causes its premature termination and leads to the formation of M5. Our studies also showed that in different Chinese hamster cell lines the two alleles of the protein P5 are nonidentical and make protein products which differ from each other in isoelectric points. It is suggested that protein P5 and its isoelectric variant P6 may constitute microtubule-associated proteins.

Full text

PDF
1761

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulinski J. C., Borisy G. G. Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):293–297. doi: 10.1073/pnas.76.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cabral F., Abraham I., Gottesman M. M. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in alpha-tubulin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4388–4391. doi: 10.1073/pnas.78.7.4388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabral F., Sobel M. E., Gottesman M. M. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell. 1980 May;20(1):29–36. doi: 10.1016/0092-8674(80)90231-7. [DOI] [PubMed] [Google Scholar]
  4. Capecchi M. R., Haar R. A., Capecchi N. E., Sveda M. M. The isolation of a suppressible nonsense mutant in mammalian cells. Cell. 1977 Oct;12(2):371–381. doi: 10.1016/0092-8674(77)90113-1. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Duerr A., Pallas D., Solomon F. Molecular analysis of cytoplasmic microtubules in situ: identification of both widespread and specific proteins. Cell. 1981 Apr;24(1):203–211. doi: 10.1016/0092-8674(81)90516-x. [DOI] [PubMed] [Google Scholar]
  7. Gray J. W., Carrano A. V., Steinmetz L. L., Van Dilla M. A., Moore D. H., 2nd, Mayall B. H., Mendelsohn M. L. Chromosome measurement and sorting by flow systems. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1231–1234. doi: 10.1073/pnas.72.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grisham L. M., Wilson L., Bensch K. G. Antimitotic action of griseofulvin does not involve disruption of microtubules. Nature. 1973 Aug 3;244(5414):294–296. doi: 10.1038/244294a0. [DOI] [PubMed] [Google Scholar]
  9. Gupta R. S., Chan D. Y., Siminovitch L. Evidence for functional hemizygosity at the Emtr locus in CHO cells through segregation analysis. Cell. 1978 Aug;14(4):1007–1013. doi: 10.1016/0092-8674(78)90354-9. [DOI] [PubMed] [Google Scholar]
  10. Gupta R. S., Gupta R. Mutants of chinese hamster ovary cells affected in two different microtubule-associated proteins. Genetic and biochemical studies. J Biol Chem. 1984 Feb 10;259(3):1882–1890. [PubMed] [Google Scholar]
  11. Gupta R. S., Ho T. K., Moffat M. R., Gupta R. Podophyllotoxin-resistant mutants of Chinese hamster ovary cells. Alteration in a microtubule-associated protein. J Biol Chem. 1982 Jan 25;257(2):1071–1078. [PubMed] [Google Scholar]
  12. Gupta R. S. Podophyllotoxin resistance: a codominant selection system for quantitative mutagenesis studies in mammalian cells. Mutat Res. 1981 Sep;83(2):261–270. doi: 10.1016/0027-5107(81)90010-5. [DOI] [PubMed] [Google Scholar]
  13. Gupta R. S. Podophyllotoxin-resistant mutants of Chinese hamster ovary cells: cross-resistance studies with various microtubule inhibitors and podophyllotoxin analogues. Cancer Res. 1983 Feb;43(2):505–512. [PubMed] [Google Scholar]
  14. Gupta R. S. Taxol resistant mutants of Chinese hamster ovary cells: genetic biochemical, and cross-resistance studies. J Cell Physiol. 1983 Jan;114(1):137–144. doi: 10.1002/jcp.1041140122. [DOI] [PubMed] [Google Scholar]
  15. Izant J. G., Weatherbee J. A., McIntosh J. R. A microtubule-associated protein in the mitotic spindle and the interphase nucleus. Nature. 1982 Jan 21;295(5846):248–250. doi: 10.1038/295248a0. [DOI] [PubMed] [Google Scholar]
  16. Keates R. A. Griseofulvin at low concentration inhibits the rate of microtubule polymerization in vitro. Biochem Biophys Res Commun. 1981 Sep 30;102(2):746–752. doi: 10.1016/s0006-291x(81)80195-7. [DOI] [PubMed] [Google Scholar]
  17. Keates R. A., Sarangi F., Ling V. Structural and functional alterations in microtubule protein from Chinese hamster ovary cell mutants. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5638–5642. doi: 10.1073/pnas.78.9.5638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin C. C., Chang T. D., Niewczas-Late V. The establishment and chromosome analysis of a new cell line of Chinese hamster from spontaneous transformation in vitro. Can J Genet Cytol. 1971 Mar;13(1):9–13. doi: 10.1139/g71-002. [DOI] [PubMed] [Google Scholar]
  19. Ling V. Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol. 1975 Dec;17(4):503–515. doi: 10.1139/g75-064. [DOI] [PubMed] [Google Scholar]
  20. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  21. Roobol A., Gull K., Pogson I. Evidence that griseofulvin binds to a microtubule associated protein. FEBS Lett. 1977 Mar 15;75(1):149–153. doi: 10.1016/0014-5793(77)80073-2. [DOI] [PubMed] [Google Scholar]
  22. Sheir-Neiss G., Lai M. H., Morris N. R. Identification of a gene for beta-tubulin in Aspergillus nidulans. Cell. 1978 Oct;15(2):639–647. doi: 10.1016/0092-8674(78)90032-6. [DOI] [PubMed] [Google Scholar]
  23. Sloboda R. D., Van Blaricom G., Creasey W. A., Rosenbaum J. L., Malawista S. E. Griseofulvin: association with tubulin and inhibition of in vitro microtubule assembly. Biochem Biophys Res Commun. 1982 Apr 14;105(3):882–888. doi: 10.1016/0006-291x(82)91052-x. [DOI] [PubMed] [Google Scholar]
  24. Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]
  25. Zieve G., Solomon F. Proteins specifically associated with the microtubules of the mammalian mitotic spindle. Cell. 1982 Feb;28(2):233–242. doi: 10.1016/0092-8674(82)90341-5. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES