Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1981 May;1(5):460–468. doi: 10.1128/mcb.1.5.460

Temperature-sensitive forms of large and small invertase in a mutant derived from a SUC1 strain of Saccharomyces cerevisiae.

T Mizunaga 1, J S Tkacz 1, L Rodriguez 1, R A Hackel 1, J O Lampen 1
PMCID: PMC369341  PMID: 6765603

Abstract

Mutagenesis of the sucrose-fermenting (SUC1) Saccharomyces cerevisiae strain 4059-358D yielded an invertase-negative mutant (D10). Subsequent mutagenic treatment of D10 gave a sucrose-fermenting revertant (D10-ER1) that contained the same amount of large (mannoprotein) invertase as strain 4059-358D but only trace amounts of the smaller intracellular nonglycosylated enzyme. Limited genetic evidence indicated that the mutations in D10 and D10-ER1 are allelic to the SUC1 gene. The large invertases from D10-ER1 and 4059-358D were purified and compared. The two enzymes have similar specific activity and Km for sucrose, cross-react immunologically, and show the same subunit molecular weight after removal of the carbohydrate with endo-beta-N-acetylglucosaminidae H. They differ in that the large enzyme from the revertant is rapidly inactivated at 55 degrees C, whereas that from the parent is relatively stable at 65 degrees C. The small invertase in extracts of D10-ER1 is also heat sensitive as compared to the small enzyme from the original parent strain. The low level of small invertase in mutant D10-ER1 may reflect increased intracellular degradation of this heat-labile form. In several crosses of D10-ER1 with strains carrying the SUC1 or SUC3 genes, the temperature sensitivity of the large and small invertases and the low cellular level of small invertase appeared to cosegregate. These findings are evidence that SUC1 is a structural gene for invertase and that both large and small forms are encoded by a single gene. A detailed genetic analysis is presented in a companion paper.

Full text

PDF
460

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams B. B., Hackel R., Mizunaga T., Lampen J. O. Relationship of large and small invertases in Saccharomyces: mutant selectively deficient in small invertase. J Bacteriol. 1978 Sep;135(3):809–817. doi: 10.1128/jb.135.3.809-817.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babczinski P. Partial purification, characterization and localization of the membrane-associated invertase of yeast. Biochim Biophys Acta. 1980 Jul 10;614(1):121–133. doi: 10.1016/0005-2744(80)90173-4. [DOI] [PubMed] [Google Scholar]
  3. Babczinski P., Tanner W. A membrane-associated isozyme of invertase in yeast. Precursor of the external glycoprotein. Biochim Biophys Acta. 1978 Feb 1;538(3):426–434. doi: 10.1016/0304-4165(78)90404-x. [DOI] [PubMed] [Google Scholar]
  4. Baseer A., Shall S. Properties of the internal invertase of yeast, Saccharomyces cerevisiae. Biochim Biophys Acta. 1971 Oct;250(1):192–202. doi: 10.1016/0005-2744(71)90133-1. [DOI] [PubMed] [Google Scholar]
  5. Chu F. K., Trimble R. B., Maley F. The effect of carbohydrate depletion on the properties of yeast external invertase. J Biol Chem. 1978 Dec 25;253(24):8691–8693. [PubMed] [Google Scholar]
  6. Elorza M. V., Rodriguez L., Villanueva J. R., Sentandreu R. Regulation of acid phosphatase synthesis in Saccharomyces cerevisiae. Biochim Biophys Acta. 1978 Nov 21;521(1):342–351. doi: 10.1016/0005-2787(78)90276-9. [DOI] [PubMed] [Google Scholar]
  7. Gallili G., Lampen J. O. Large and small invertases and the yeast cell cycle. Pattern of synthesis and sensitivity to tunicamycin. Biochim Biophys Acta. 1977 Mar 2;475(1):113–122. doi: 10.1016/0005-2787(77)90345-8. [DOI] [PubMed] [Google Scholar]
  8. Gascón S., Lampen J. O. Purification of the internal invertase of yeast. J Biol Chem. 1968 Apr 10;243(7):1567–1572. [PubMed] [Google Scholar]
  9. Gascón S., Neumann N. P., Lampen J. O. Comparative study of the properties of the purified internal and external invertases from yeast. J Biol Chem. 1968 Apr 10;243(7):1573–1577. [PubMed] [Google Scholar]
  10. Gascón S., Ottolenghi P. Invertase isozymes and their localization in yeast. C R Trav Lab Carlsberg. 1967;36(5):85–93. [PubMed] [Google Scholar]
  11. Goldstein A., Lampen J. O. Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol. 1975;42:504–511. doi: 10.1016/0076-6879(75)42159-0. [DOI] [PubMed] [Google Scholar]
  12. Grossmann M. K., Zimmermann F. K. The structural genes of internal invertases in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Sep;175(2):223–229. doi: 10.1007/BF00425540. [DOI] [PubMed] [Google Scholar]
  13. Hackel R. A. Genetic control of invertase formation in Saccharomyces cerevisiae. I. Isolation and characterization of mutants affecting sucrose utilization. Mol Gen Genet. 1975 Oct 22;140(4):361–370. doi: 10.1007/BF00267327. [DOI] [PubMed] [Google Scholar]
  14. Hackel R. A., Khan N. A. Genetic control of invertase formation in Saccharomyces cerevisiae. II. Isolation and characterization of mutants conferring invertase hyperproduction in strain EK-6B carrying the SUC3 gene. Mol Gen Genet. 1978 Sep 8;164(3):295–302. doi: 10.1007/BF00333160. [DOI] [PubMed] [Google Scholar]
  15. Iglesias C. F., Moreno F., Gascon S. Light and intermediate molecular forms of yeast invertase as precursors of the heavy enzyme. FEBS Lett. 1980 May 19;114(1):57–60. doi: 10.1016/0014-5793(80)80860-x. [DOI] [PubMed] [Google Scholar]
  16. Kessler S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J Immunol. 1976 Nov;117(5 Pt 1):1482–1490. [PubMed] [Google Scholar]
  17. Kuo S. C., Lampen J. O. Osmotic regulation of invertase formation and secretion by protoplasts of Saccharomyces. J Bacteriol. 1971 Apr;106(1):183–191. doi: 10.1128/jb.106.1.183-191.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Moreno F., Ochoa A. G., Gascón S., Villanueva J. R. Molecular forms of yeast invertase. Eur J Biochem. 1975 Jan 15;50(3):571–579. doi: 10.1111/j.1432-1033.1975.tb09898.x. [DOI] [PubMed] [Google Scholar]
  20. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neumann N. P., Lampen J. O. Purification and properties of yeast invertase. Biochemistry. 1967 Feb;6(2):468–475. doi: 10.1021/bi00854a015. [DOI] [PubMed] [Google Scholar]
  22. Ottolenghi P. Some properties of five non-allelic -D-fructofuranosidases (invertases) of Saccharomyces. C R Trav Lab Carlsberg. 1971;38(13):213–221. [PubMed] [Google Scholar]
  23. Rodriguez L., Lampen J. O., MacKay V. L. SUC1 gene of Saccharomyces: a structural gene for the large (glycoprotein) and small (carbohydrate-free) forms of invertase. Mol Cell Biol. 1981 May;1(5):469–474. doi: 10.1128/mcb.1.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  25. Tkacz J. S. A rapid semiquantitative assay that facilitates purification of endo-beta-N-acetylglucosaminidase H from Streptomyces plicatus. Anal Biochem. 1978 Jan;84(1):49–55. doi: 10.1016/0003-2697(78)90482-7. [DOI] [PubMed] [Google Scholar]
  26. Trimble R. B., Maley F. Subunit structure of external invertase from Saccharomyces cerevisiae. J Biol Chem. 1977 Jun 25;252(12):4409–4412. [PubMed] [Google Scholar]
  27. Van Rijn H. J., Boer P., Steyn-Parvé E. P. Biosynthesis of acid phosphatase of baker's yeast. Factors influencing its production by protoplasts and characterization of the secreted enzyme. Biochim Biophys Acta. 1972 May 12;268(2):431–441. doi: 10.1016/0005-2744(72)90339-7. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES