Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687

Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes.

P Stanley 1
PMCID: PMC369349  PMID: 9279382

Abstract

Three distinct Chinese hamster ovary mutants selected for resistance to wheat germ agglutinin were previously described by this laboratory. In this paper, evidence is provided that each phenotype occurs at a similar frequency in an unmutagenized population of Chinese hamster ovary cells. Two novel wheat germ agglutinin resistance phenotypes (WgaR), which also appear to occur at similar frequencies were uncovered in the course of these studies. One mutant type belongs to a new, recessive complementation group (VIII), and the second belongs to a previously defined complementation group (VI). Mutants from each of the four WgaR complementation groups (I, II, III, and VIII) exhibited characteristic and unique patterns of resistance to the toxicity of a variety of plant lectins. These properties were used in developing independent selection protocols which were highly specific for the isolation of each of the mutant types.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim Biophys Acta. 1967 Oct 23;147(2):262–271. [PubMed] [Google Scholar]
  2. Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
  3. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Howard I. K., Sage H. J., Stein M. D., Young N. M., Leon M. A., Dyckes D. F. Studies on a phytohemagglutinin from the lentil. II. Multiple forms of Lens culinaris hemagglutinin. J Biol Chem. 1971 Mar 25;246(6):1590–1595. [PubMed] [Google Scholar]
  5. Nagata Y., Burger M. M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974 May 25;249(10):3116–3122. [PubMed] [Google Scholar]
  6. Nicolson G. L., Blaustein J., Etzler M. E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry. 1974 Jan 1;13(1):196–204. doi: 10.1021/bi00698a029. [DOI] [PubMed] [Google Scholar]
  7. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  8. Stanley P., Carver J. P. Binding of [125I] wheat germ agglutinin to Chinese hamster ovary cells under conditions which affect the mobility of membrane components. J Cell Biol. 1978 Dec;79(3):617–622. doi: 10.1083/jcb.79.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stanley P., Carver J. P. Selective loss of wheat germ agglutinin binding to agglutinin-resistant mutants of Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5056–5059. doi: 10.1073/pnas.74.11.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]
  11. Stanley P., Sudo T., Carver J. P. Differential involvement of cell surface sialic acid residues in wheat germ agglutinin binding to parental and wheat germ agglutinin-resistant Chinese hamster ovary cells. J Cell Biol. 1980 Apr;85(1):60–69. doi: 10.1083/jcb.85.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES