Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1981 Sep;1(9):769–784. doi: 10.1128/mcb.1.9.769

Intracellular monosaccharide and amino acid concentrations and activities and the mechanisms of insulin action.

S B Horowitz 1, T W Pearson 1
PMCID: PMC369361  PMID: 9279390

Abstract

Current amino acid and monosaccharide transport models are based on an assumption which equates the intracellular chemical activity of a solute with its concentration. This assumption was tested for alpha-aminoisobutyric acid and 3-O-methylglucose in a giant cell, the amphibian oocyte, by using recently developed cryomicrodissection and internal reference phase techniques. We found the following. (i) alpha-Aminoisobutyric acid and 3-O-methylglucose activities were much greater in cytoplasm than was suggested by concentration data; i.e., activity coefficients were higher than in ordinary water solutions. This is attributable to the inaccessibility of considerable water as solvent (solute exclusion). (ii) Solute concentrations varied regionally as follows: nucleus > > animal cytoplasm > vegetal cytoplasm. Insulin increased the nucleus/cytoplasm concentration asymmetry, apparently by increasing cytoplasmic solute exclusion. (iii) Nuclear activity coefficients more closely resembled those of ordinary saline solutions so that nucleus/ extracellular concentration ratios reflected transmembrane activity gradients better than did cytoplasm (or whole cell)/extracellular ratios. (iv) Mediated passive alpha-aminoisobutyric acid and 3-O-methylglucose transport were constituent oocyte membrane properties. Membrane active transport was initiated with time (in the presence of substrate) and by insulin. (v) Increased temperature mimicked insulin in enhancing transmembrane alpha-aminoisobutyric acid activity gradients and increasing the nucleus/cytoplasm concentration asymmetry. These results indicated that concentration data are a misleading measure of cellular amino acid and monosaccharide activity; some consequences of this observation were explored. A model is proposed in which cell water has reduced solvent capacity or is compartmentalized (considered less likely) and is susceptible to physiological modulation. The model accounts for many observations in small cells, suggesting generality of the exclusion phenomenon and a previously unrecognized metabolic control mechanism.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beug H., Claviez M., Jockusch B. M., Graf T. Differential expression of Rous Sarcoma virus-specific transformation parameters in enucleated cells. Cell. 1978 Aug;14(4):843–856. doi: 10.1016/0092-8674(78)90340-9. [DOI] [PubMed] [Google Scholar]
  2. Bittar E. E., Dick D. A., Fry D. J. Action of insulin on sodium efflux from the toad cocyte. Nature. 1968 Mar 30;217(5135):1280–1281. doi: 10.1038/2171280a0. [DOI] [PubMed] [Google Scholar]
  3. Cardell R. R., Jr, Badenhausen S., Porter K. R. Intestinal triglyceride absorption in the rat. An electron microscopical study. J Cell Biol. 1967 Jul;34(1):123–155. doi: 10.1083/jcb.34.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Century T. J., Fenichel I. R., Horowitz S. B. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J Cell Sci. 1970 Jul;7(1):5–13. doi: 10.1242/jcs.7.1.5. [DOI] [PubMed] [Google Scholar]
  5. Century T. J., Horowitz S. B. Sodium exchange in the cytoplasm and nucleus of amphibian oocytes. J Cell Sci. 1974 Nov;16(2):465–471. doi: 10.1242/jcs.16.2.465. [DOI] [PubMed] [Google Scholar]
  6. Czech M. P. Molecular basis of insulin action. Annu Rev Biochem. 1977;46:359–384. doi: 10.1146/annurev.bi.46.070177.002043. [DOI] [PubMed] [Google Scholar]
  7. Dick D. A., McLaughlin S. G. The activities and concentrations of sodium and potassium in toad oocytes. J Physiol. 1969 Nov;205(1):61–78. doi: 10.1113/jphysiol.1969.sp008951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DuPre A. M., Hempling H. G. Electrolyte and non-electrolyte distribution in the Ehrlich ascites tumor cells during the cell cycle. J Cell Physiol. 1980 Dec;105(3):389–399. doi: 10.1002/jcp.1041050302. [DOI] [PubMed] [Google Scholar]
  9. El-Etr M., Schorderet-Slatkine S., Baulieu E. E. Meiotic maturation in Xenopus laevis oocytes initiated by insulin. Science. 1979 Sep 28;205(4413):1397–1399. doi: 10.1126/science.472755. [DOI] [PubMed] [Google Scholar]
  10. Frank M., Horowitz S. B. Nucleocytoplasmic transport and distribution of an amino acid, in situ. J Cell Sci. 1975 Oct;19(1):127–139. doi: 10.1242/jcs.19.1.127. [DOI] [PubMed] [Google Scholar]
  11. Frank M., Horowitz S. B. Potassium exchange in the whole cell, cytoplasm, and nucleus of amphibian oocytes. Am J Physiol. 1980 Mar;238(3):C133–C138. doi: 10.1152/ajpcell.1980.238.3.C133. [DOI] [PubMed] [Google Scholar]
  12. Frank M. The nucleocytoplasmic distribution of 3-O-methylglucose in the amphibian oocyte. Experientia. 1977 Jul 15;33(7):897–898. doi: 10.1007/BF01951268. [DOI] [PubMed] [Google Scholar]
  13. HEINZ E. Kinetic studies on the influx of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell. J Biol Chem. 1954 Dec;211(2):781–790. [PubMed] [Google Scholar]
  14. HEINZ E., WALSH P. M. Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J Biol Chem. 1958 Dec;233(6):1488–1493. [PubMed] [Google Scholar]
  15. Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta. 1974 Apr 29;355(1):77–104. doi: 10.1016/0304-419x(74)90008-0. [DOI] [PubMed] [Google Scholar]
  16. Horowitz S. B., Fenichel I. R. Analysis of glycerol-3H transport in the frog oocyte by extractive and radioautographic techniques. J Gen Physiol. 1968 Jun;51(6):703–730. doi: 10.1085/jgp.51.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horowitz S. B., Paine P. L. Cytoplasmic exclusion as a basis for asymmetric nucleocytoplasmic solute distributions. Nature. 1976 Mar 11;260(5547):151–153. doi: 10.1038/260151a0. [DOI] [PubMed] [Google Scholar]
  18. Horowitz S. B., Paine P. L. Reference phase analysis of free and bound intracellular solutes. II. Isothermal and isotopic studies of cytoplasmic sodium, potassium, and water. Biophys J. 1979 Jan;25(1):45–62. doi: 10.1016/S0006-3495(79)85277-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horowitz S. B., Paine P. L., Tluczek L., Reynhout J. K. Reference phase analysis of free and bound intracellular solutes. I. Sodium and potassium in amphibian oocytes. Biophys J. 1979 Jan;25(1):33–44. doi: 10.1016/S0006-3495(79)85276-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horowitz S. B. The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol. 1972 Sep;54(3):609–625. doi: 10.1083/jcb.54.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Isselbacher K. J. Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture. Proc Natl Acad Sci U S A. 1972 Mar;69(3):585–589. doi: 10.1073/pnas.69.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. JACQUEZ J. A. Carrier-amino acid stoichiometry in amino acid transport in Ehrlich ascites cells. Biochim Biophys Acta. 1963 Apr;71:15–33. doi: 10.1016/0006-3002(63)90981-8. [DOI] [PubMed] [Google Scholar]
  23. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KIPNIS D. M., CORI C. F. Studies of tissue permeability. III. The effect of insulin on pentose uptake by the diaphragm. J Biol Chem. 1957 Feb;224(2):681–693. [PubMed] [Google Scholar]
  25. KIPNIS D. M., NOALL M. W. Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim Biophys Acta. 1958 Apr;28(1):226–227. doi: 10.1016/0006-3002(58)90466-9. [DOI] [PubMed] [Google Scholar]
  26. MANCHESTER K. L., WOOL I. G. INSULIN AND INCORPORATION OF AMINO ACIDS INTO PROTEIN OF MUSCLE. 1. ACCUMULATION AND INCORPORATION STUDIES WITH THE PERFUSED RAT HEART. Biochem J. 1963 Nov;89:202–209. doi: 10.1042/bj0890202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MORGAN H. E., REGEN D. M., PARK C. R. IDENTIFICATION OF A MOBILE CARRIER-MEDIATED SUGAR TRANSPORT SYSTEM IN MUSCLE. J Biol Chem. 1964 Feb;239:369–374. [PubMed] [Google Scholar]
  28. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  29. Merriam R. W. Some characteristics of amino acid transport in frog ovarian oocytes. Exp Cell Res. 1966 May;42(2):340–347. doi: 10.1016/0014-4827(66)90298-9. [DOI] [PubMed] [Google Scholar]
  30. Merriam R. W. The intracellular distribution of the free amino acid pool in frog oocytes. Exp Cell Res. 1969 Aug;56(2):259–264. doi: 10.1016/0014-4827(69)90011-1. [DOI] [PubMed] [Google Scholar]
  31. NAORA H., NAORA H., IZAWA M., ALLFREY V. G., MIRSKY A. E. Some observations on differences in composition between the nucleus and cytoplasm of the frog oocyte. Proc Natl Acad Sci U S A. 1962 May 15;48:853–859. doi: 10.1073/pnas.48.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. NORMAN D., MENOZZI P., REID D., LESTER G., HECHTER O. Action of insulin on sugar permeability in rat diaphragm muscle. J Gen Physiol. 1959 Jul 20;42(6):1277–1299. doi: 10.1085/jgp.42.6.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Neville M. C. Cellular accumulation of amino acids: adsorption revisited. Ann N Y Acad Sci. 1973 Mar 30;204:538–563. doi: 10.1111/j.1749-6632.1973.tb30803.x. [DOI] [PubMed] [Google Scholar]
  34. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  35. PARRISH J. E., KIPNIS D. M. EFFECT OF NA ON SUGAR AND AMINO ACID TRANSPORT IN STRIATED MUSCLE. J Clin Invest. 1964 Oct;43:1994–2002. doi: 10.1172/JCI105073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. POLLERI A., MENOZZI P., NORMAN D., HECHTER O. Effect of inhibitors on D-xylose permeability in rat diaphragm muscle. J Gen Physiol. 1961 Jan;44:479–486. doi: 10.1085/jgp.44.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  38. Palmer L. G., Century T. J., Civan M. M. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes. J Membr Biol. 1978 Apr 20;40(1):25–38. doi: 10.1007/BF01909737. [DOI] [PubMed] [Google Scholar]
  39. Plagemenn P. G., Richey D. P., Zylka J. M., Erbe J. Cell cycle and growth stage-dependent changes in the transport of nucleosides, hypoxanthine, choline, and deoxyglucose in cultured Novikoff rat hepatoma cells. J Cell Biol. 1975 Jan;64(1):29–41. doi: 10.1083/jcb.64.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. ROSENBERG T., WILBRANDT W. Uphill transport induced by counterflow. J Gen Physiol. 1957 Nov 20;41(2):289–296. doi: 10.1085/jgp.41.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. SCHIMKE R. T. ENZYMES OF ARGININE METABOLISM IN CELL CULTURE: STUDIES ON ENZYME INDUCTION AND REPRESSION. Natl Cancer Inst Monogr. 1964 Apr;13:197–216. [PubMed] [Google Scholar]
  42. Sander G., Pardee A. B. Transport changes in synchronously growing CHO and L cells. J Cell Physiol. 1972 Oct;80(2):267–271. doi: 10.1002/jcp.1040800214. [DOI] [PubMed] [Google Scholar]
  43. Scharff R., Wool I. G. Accumulation of amino acids in muscle of perfused rat heart. Effect of insulin. Biochem J. 1965 Oct;97(1):257–271. doi: 10.1042/bj0970257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Siebert G. The limited contribution of the nuclear envelope to metabolic compartmentation. Biochem Soc Trans. 1978;6(1):5–9. doi: 10.1042/bst0060005. [DOI] [PubMed] [Google Scholar]
  45. Stephens R. E., Edds K. T. Microtubules: structure, chemistry, and function. Physiol Rev. 1976 Oct;56(4):709–777. doi: 10.1152/physrev.1976.56.4.709. [DOI] [PubMed] [Google Scholar]
  46. Tupper J. T., Mills B., Zorgniotti F. Membrane transport in synchronized Ehrlich ascites tumor cells: uptake of amino acids by the A and L system during the cell cycle. J Cell Physiol. 1976 May;88(1):77–87. doi: 10.1002/jcp.1040880110. [DOI] [PubMed] [Google Scholar]
  47. Weber G. Integrative action of insulin at the molecular level. Isr J Med Sci. 1972 Mar;8(3):325–343. [PubMed] [Google Scholar]
  48. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES