Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1991 Mar;11(3):1638–1646. doi: 10.1128/mcb.11.3.1638

Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

G Duester 1, M L Shean 1, M S McBride 1, M J Stewart 1
PMCID: PMC369461  PMID: 1996113

Abstract

Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.

Full text

PDF
1638

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., Evans R. M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987 Jul 17;237(4812):268–275. doi: 10.1126/science.3037703. [DOI] [PubMed] [Google Scholar]
  2. Bilanchone V., Duester G., Edwards Y., Smith M. Multiple mRNAs for human alcohol dehydrogenase (ADH): developmental and tissue specific differences. Nucleic Acids Res. 1986 May 12;14(9):3911–3926. doi: 10.1093/nar/14.9.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brand N., Petkovich M., Krust A., Chambon P., de Thé H., Marchio A., Tiollais P., Dejean A. Identification of a second human retinoic acid receptor. Nature. 1988 Apr 28;332(6167):850–853. doi: 10.1038/332850a0. [DOI] [PubMed] [Google Scholar]
  4. Burd L., Martsolf J. T. Fetal alcohol syndrome: diagnosis and syndromal variability. Physiol Behav. 1989 Jul;46(1):39–43. doi: 10.1016/0031-9384(89)90318-1. [DOI] [PubMed] [Google Scholar]
  5. Costa R. H., Grayson D. R., Darnell J. E., Jr Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol. 1989 Apr;9(4):1415–1425. doi: 10.1128/mcb.9.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dollé P., Ruberte E., Kastner P., Petkovich M., Stoner C. M., Gudas L. J., Chambon P. Differential expression of genes encoding alpha, beta and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature. 1989 Dec 7;342(6250):702–705. doi: 10.1038/342702a0. [DOI] [PubMed] [Google Scholar]
  8. Duester G., Smith M., Bilanchone V., Hatfield G. W. Molecular analysis of the human class I alcohol dehydrogenase gene family and nucleotide sequence of the gene encoding the beta subunit. J Biol Chem. 1986 Feb 15;261(5):2027–2033. [PubMed] [Google Scholar]
  9. Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., de Vries N. J., Heideveld M., Nieuwkoop P. D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989 Jul 13;340(6229):140–144. doi: 10.1038/340140a0. [DOI] [PubMed] [Google Scholar]
  10. Giguere V., Ong E. S., Segui P., Evans R. M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987 Dec 17;330(6149):624–629. doi: 10.1038/330624a0. [DOI] [PubMed] [Google Scholar]
  11. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graupner G., Wills K. N., Tzukerman M., Zhang X. K., Pfahl M. Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity. Nature. 1989 Aug 24;340(6235):653–656. doi: 10.1038/340653a0. [DOI] [PubMed] [Google Scholar]
  13. Herbomel P., Bourachot B., Yaniv M. Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell. 1984 Dec;39(3 Pt 2):653–662. doi: 10.1016/0092-8674(84)90472-0. [DOI] [PubMed] [Google Scholar]
  14. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  15. Koivusalo M., Baumann M., Uotila L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 1989 Oct 23;257(1):105–109. doi: 10.1016/0014-5793(89)81797-1. [DOI] [PubMed] [Google Scholar]
  16. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  17. Leo M. A., Kim C. I., Lieber C. S. NAD+-dependent retinol dehydrogenase in liver microsomes. Arch Biochem Biophys. 1987 Dec;259(2):241–249. doi: 10.1016/0003-9861(87)90492-9. [DOI] [PubMed] [Google Scholar]
  18. Leo M. A., Kim C. I., Lowe N., Lieber C. S. Increased hepatic retinal dehydrogenase activity after phenobarbital and ethanol administration. Biochem Pharmacol. 1989 Jan 1;38(1):97–103. doi: 10.1016/0006-2952(89)90155-x. [DOI] [PubMed] [Google Scholar]
  19. Mangelsdorf D. J., Ong E. S., Dyck J. A., Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990 May 17;345(6272):224–229. doi: 10.1038/345224a0. [DOI] [PubMed] [Google Scholar]
  20. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  21. Mezey E., Holt P. R. The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp Mol Pathol. 1971 Oct;15(2):148–156. doi: 10.1016/0014-4800(71)90095-5. [DOI] [PubMed] [Google Scholar]
  22. Mårdh G., Dingley A. L., Auld D. S., Vallee B. L. Human class II (pi) alcohol dehydrogenase has a redox-specific function in norepinephrine metabolism. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8908–8912. doi: 10.1073/pnas.83.23.8908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Malley B. W. Did eucaryotic steroid receptors evolve from intracrine gene regulators? Endocrinology. 1989 Sep;125(3):1119–1120. doi: 10.1210/endo-125-3-1119. [DOI] [PubMed] [Google Scholar]
  24. Petkovich M., Brand N. J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987 Dec 3;330(6147):444–450. doi: 10.1038/330444a0. [DOI] [PubMed] [Google Scholar]
  25. Posch K. C., Enright W. J., Napoli J. L. Retinoic acid synthesis by cytosol from the alcohol dehydrogenase negative deermouse. Arch Biochem Biophys. 1989 Oct;274(1):171–178. doi: 10.1016/0003-9861(89)90428-1. [DOI] [PubMed] [Google Scholar]
  26. Roberts A. B., Nichols M. D., Newton D. L., Sporn M. B. In vitro metabolism of retinoic acid in hamster intestine and liver. J Biol Chem. 1979 Jul 25;254(14):6296–6302. [PubMed] [Google Scholar]
  27. Schüle R., Umesono K., Mangelsdorf D. J., Bolado J., Pike J. W., Evans R. M. Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell. 1990 May 4;61(3):497–504. doi: 10.1016/0092-8674(90)90531-i. [DOI] [PubMed] [Google Scholar]
  28. Smith M., Hopkinson D. A., Harris H. Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet. 1971 Feb;34(3):251–271. doi: 10.1111/j.1469-1809.1971.tb00238.x. [DOI] [PubMed] [Google Scholar]
  29. Stewart M. J., McBride M. S., Winter L. A., Duester G. Promoters for the human alcohol dehydrogenase genes ADH1, ADH2, and ADH3: interaction of CCAAT/enhancer-binding protein with elements flanking the ADH2 TATA box. Gene. 1990 Jun 15;90(2):271–279. doi: 10.1016/0378-1119(90)90190-3. [DOI] [PubMed] [Google Scholar]
  30. Stewart M. J., Shean M. L., Duester G. trans activation of human alcohol dehydrogenase gene expression in hepatoma cells by C/EBP molecules bound in a novel arrangement just 5' and 3' to the TATA box. Mol Cell Biol. 1990 Sep;10(9):5007–5010. doi: 10.1128/mcb.10.9.5007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Streissguth A. P., Landesman-Dwyer S., Martin J. C., Smith D. W. Teratogenic effects of alcohol in humans and laboratory animals. Science. 1980 Jul 18;209(4454):353–361. doi: 10.1126/science.6992275. [DOI] [PubMed] [Google Scholar]
  32. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  33. Sucov H. M., Murakami K. K., Evans R. M. Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5392–5396. doi: 10.1073/pnas.87.14.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thaller C., Eichele G. Characterization of retinoid metabolism in the developing chick limb bud. Development. 1988 Jul;103(3):473–483. doi: 10.1242/dev.103.3.473. [DOI] [PubMed] [Google Scholar]
  35. Umesono K., Giguere V., Glass C. K., Rosenfeld M. G., Evans R. M. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature. 1988 Nov 17;336(6196):262–265. doi: 10.1038/336262a0. [DOI] [PubMed] [Google Scholar]
  36. Vallee B. L., Bazzone T. J. Isozymes of human liver alcohol dehydrogenase. Isozymes Curr Top Biol Med Res. 1983;8:219–244. [PubMed] [Google Scholar]
  37. Van Thiel D. H., Gavaler J., Lester R. Ethanol inhibition of vitamin A metabolism in the testes: possible mechanism for sterility in alcoholics. Science. 1974 Dec 6;186(4167):941–942. doi: 10.1126/science.186.4167.941. [DOI] [PubMed] [Google Scholar]
  38. Vasios G. W., Gold J. D., Petkovich M., Chambon P., Gudas L. J. A retinoic acid-responsive element is present in the 5' flanking region of the laminin B1 gene. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9099–9103. doi: 10.1073/pnas.86.23.9099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Williams J. B., Napoli J. L. Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4658–4662. doi: 10.1073/pnas.82.14.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Winter L. A., Stewart M. J., Shean M. L., Dong Y., Poellinger L., Okret S., Gustafsson J. A., Duester G. A hormone response element upstream from the human alcohol dehydrogenase gene ADH2 consists of three tandem glucocorticoid receptor binding sites. Gene. 1990 Jul 16;91(2):233–240. doi: 10.1016/0378-1119(90)90093-7. [DOI] [PubMed] [Google Scholar]
  41. ZACHMAN R. D., OLSON J. A. A comparison of retinene reductase and alcohol dehydrogenase of rat liver. J Biol Chem. 1961 Aug;236:2309–2313. [PubMed] [Google Scholar]
  42. Zelent A., Krust A., Petkovich M., Kastner P., Chambon P. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature. 1989 Jun 29;339(6227):714–717. doi: 10.1038/339714a0. [DOI] [PubMed] [Google Scholar]
  43. de Thé H., Marchio A., Tiollais P., Dejean A. A novel steroid thyroid hormone receptor-related gene inappropriately expressed in human hepatocellular carcinoma. Nature. 1987 Dec 17;330(6149):667–670. doi: 10.1038/330667a0. [DOI] [PubMed] [Google Scholar]
  44. de Thé H., Vivanco-Ruiz M. M., Tiollais P., Stunnenberg H., Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature. 1990 Jan 11;343(6254):177–180. doi: 10.1038/343177a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES