Skip to main content
. 2013 Jun 19;29(13):i71–i79. doi: 10.1093/bioinformatics/btt230

Table 2.

Number of probes needed to cover all k-mers as a function of probe length and k

k 6 7 8 9 10 11 12 13 14 14-DB
25 107 432 1848 7711 32 926 139 811 600 056 2 581 111 11 189 571 22 369 622
30 86 342 1447 5958 25 087 104 858 442 146 1 864 136 7 898 521 15 790 321
35 72 283 1188 4855 20 263 83 887 350 033 1 458 889 6 103 402 12 201 612
40 62 241 1008 4096 16 995 69 906 289 682 1 198 373 4 973 143 9 942 054
45 54 211 876 3543 14 634 59 919 247 082 1 016 801 4 196 089 8 388 608
50 48 187 774 3121 12 850 52 429 215 405 883 012 3 629 050 7 255 013
55 43 168 693 2789 11 453 46 604 190 927 780 336 3 197 021 6 391 321
60 39 152 628 2521 10 330 41 944 171 445 699 051 2 856 912 5 711 393
65 36 139 574 2300 9408 38 131 155 570 633 103 2 582 209 5 162 221
70 33 128 528 2115 8637 34 953 142 386 578 525 2 355 700 4 709 394

Note: The table contains the number of probes obtained by cutting an optimal RC complete sequence to short segments with overlaps. Left column: probe length; top row: k. Right column: number of probes needed when using a regular de Bruijn sequence for k = 14.