Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1981 Feb;1(2):94–100. doi: 10.1128/mcb.1.2.94

Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum.

G Charlang 1, B Ng 1, N H Horowitz 1, R M Horowitz 1
PMCID: PMC369647  PMID: 6242827

Abstract

Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex.

Full text

PDF
94

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Charlang G. W., Horowitz N. H. Germination and growth of neurospora at low water activities. Proc Natl Acad Sci U S A. 1971 Feb;68(2):260–262. doi: 10.1073/pnas.68.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlang G., Williams N. P. Germination-defective mutant of Neurospora crassa that responds to siderophores. J Bacteriol. 1977 Dec;132(3):1042–1044. doi: 10.1128/jb.132.3.1042-1044.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Diekmann H., Krezdorn E. Stoffwechselprodukte von Mikroorganismen 150. Mitteilung. Ferricrocin, Triacetylfusigen und andere Sideramine aus Pilzen der Gattung Aspergillus, Gruppe Fumigatus. Arch Microbiol. 1975 Dec 31;106(3):191–194. doi: 10.1007/BF00446522. [DOI] [PubMed] [Google Scholar]
  4. Diekmann H., Zähner H. Konstitution von Fusigen und dessen Abbau zu delta-2-Anhydromevalonsäurelacton. Eur J Biochem. 1967 Dec;3(2):213–218. doi: 10.1111/j.1432-1033.1967.tb19518.x. [DOI] [PubMed] [Google Scholar]
  5. Emery T. Malonichrome, a new iron chelate from Fusarium roseum. Biochim Biophys Acta. 1980 May 7;629(2):382–390. doi: 10.1016/0304-4165(80)90110-5. [DOI] [PubMed] [Google Scholar]
  6. Horowitz N. H., Charlang G., Horn G., Williams N. P. Isolation and identification of the conidial germination factor of Neurospora crassa. J Bacteriol. 1976 Jul;127(1):135–140. doi: 10.1128/jb.127.1.135-140.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kappner M., Hasenböhler A., Zähner H. Stoffwechselprodukte von Mikroorganismen. 166. Mitteilung. Optimierung der Desferri-Ferricrocinbildung bei Aspergillus viridi-nutans Ducker & Thrower. Arch Microbiol. 1977 Dec 15;115(3):323–331. doi: 10.1007/BF00446459. [DOI] [PubMed] [Google Scholar]
  8. Moore R. E., Emery T. Nalpha-acetylfusarinines: isolation, characterization, and properties. Biochemistry. 1976 Jun 29;15(13):2719–2723. doi: 10.1021/bi00658a001. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES