Abstract
The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism.
1. Introduction
The metabolic syndrome (MS) is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, cardiovascular disease (CVD), and abdominal obesity [1, 2]. MS presents a prothrombotic state as a result of endothelial dysfunction, the presence of a hypercoagulability state produced by an imbalance between coagulation factors and the proteins that regulate fibrinolysis and increased platelet reactivity [3–5]. In this latter regard, we have recently described that obese-diabetic rats with MS have an altered megakaryopoiesis that contributes to increased thrombosis. These alterations are due to an increased platelet turnover caused by a combination of accelerated death and an increased platelet production confirmed by the observation of an increased number of reticulated platelets (the youngest, more immature, and more reactive platelets). Importantly, all these alterations were associated with an increased thrombotic risk, analyzed in vivo by real time intravital microscopy, in wild-type obese-diabetic animals as well as in lean normoglycemic controls transplanted with bone marrow from obese-diabetic donors [6]. Moreover, we have also described that obese nondiabetic rats also show increased platelet counts and an increased mean platelet volume (MPV) which are associated with an increased thrombotic risk (similar to that observed in obese-diabetic rats) [7]. In fact, we have shown that platelet number, MPV, and thrombotic risk are directly correlated with weight and that a reduction of peripheral insulin resistance can contribute to reduce thrombotic risk in obese subjects. These alterations might be a consequence of the low-grade chronic inflammatory state observed in obesity, as increased platelet size (i.e., MPV) has been associated with the presence of low-grade inflammation, and several inflammatory proteins have been proven to influence megakaryocyte maturation and platelet formation [8].
Indeed, inflammation is receiving increased attention for its potential role in the pathogenesis of disorders ranging from insulin resistance and type 2 diabetes to fatty liver and CVD [9, 10]. Obesity is associated with a chronic inflammatory response characterized by abnormal adipokine production and the activation of several proinflammatory signalling pathways, resulting in the induction of several biological markers of inflammation [11]. In obese patients, increased accumulation of macrophages is a hallmark of a proinflammatory state that links obesity with systemic inflammation [12]. The foremost physical consequence of obesity is atherosclerosis in CVD [13]. In addition, obesity is accompanied by other clinical complications; these include fatty liver, cholesterol gallstones, sleep apnea, osteoarthritis, and polycystic ovary disease [14].
Adipose tissue has long been considered a nonfunctional storage pool of energy without any direct impact on organ function [15]. However, it has recently been shown that adipose tissue is a secretory organ and a potent source of hormones, peptides, and cytokines involved in food intake regulation, glucose and lipid metabolism, inflammation, coagulation, and blood pressure control [16].
Moreover, it has also become an appealing stem cell source for cell therapy and tissue engineering [17]. Therefore, adipose tissue is now considered to be an active endocrine organ that secretes various humoral factors (adipokines) [18], capable of enhancing the release and production of proinflammatory cytokines in obesity, primarily through nonfat cells, likely contributing to the low-grade systemic inflammatory state found in MS-associated chronic pathologies (e.g., atherosclerosis) [19]. For instance, adiponectin is highly expressed in adipose tissue, and circulating adiponectin levels are decreased in patients with obesity, insulin resistance related to type 2 diabetes, and coronary heart disease [20]. On the other hand, the changes presented by adipose tissue in the setting of MS favor the secretion of several molecular mediators capable of activating or suppressing a number of transcription factors (PPARs, Peroxisome Proliferator Activated Receptors; C/EBPs, CCAAT-enhancer-binding proteins, among other) that regulate different MS-related metabolic pathways [21, 22].
The present paper reviews the principal molecular mechanisms involved in adipose tissue inflammation in the setting of MS and provides an in-depth description of the main genetic pathways involved in adipose tissue metabolism.
2. Metabolic Syndrome Pathophysiology
The MS is characterized by a high amount of visceral fat, insulin resistance in skeletal muscle, and hypoadiponectinemia [23]. MS subjects showed higher levels of blood pressure, waist circumference, and plasma triglycerides with a high risk of developing type 2 diabetes and CVD in the future [24, 25].
The physiopathologic changes associated with MS are diverse including, among others, endothelial dysfunction which triggers atherogenic lesions development and enhanced coagulability [3, 26]. We have reported that MS patients show higher levels of circulating sVCAM-1 and sCD40L, but not sE-selectin, as compared to non-MS patients likely indicating endothelial activation [27, 28]. On the other hand, elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1), tissue factor, and fibrinogen detected in MS patients may contribute to the abnormally increased coagulability further enhancing the risk of CVD [29, 30].
The metabolic changes related to obesity are largely attributable to the amount of intra-abdominal fat mass, rather than total body fat mass [31]. The increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated MS [32]. The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity [33]. Thus weight loss larger than 10% is associated with an increase in serum adiponectin and a decrease in hs-CRP and plasma fibrinogen [34].
The increase of intermuscular adipose tissue was primarily related to age, total body adiposity, and subclinical inflammation [35]. Functional failure of the adipose tissue results in changes in systemic energy delivery, impaired glucose consumption, and activation of self-regulatory mechanisms that extends adipose tissue influence to the whole homeostatic system, by the enhancement of adipokines secretion with the subsequent vascular-related effects [36, 37]. Adipose cell enlargement leads to a cellular proinflammatory state with reduced secretion of adiponectin and increased secretion of IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1), among others [38]. Data suggest that plasma adiponectin does not change with age, but levels are negatively associated with percent body fat, visceral fat, subcutaneous abdominal fat, insulin, and leptin levels [39, 40].
3. Adipose Tissue Inflammation in Metabolic Syndrome
There has been a paradigm shift from the traditional notion of adipose tissue merely as an energy storage site to one where adipose tissue plays an active role in energy homeostasis and other various processes [41, 42]. Adipose tissue plays a critical role in energy homeostasis, not only in storing triglycerides, but also responding to nutrient, neural, and hormonal signals and secreting adipokines that regulate feeding, thermogenesis, immunity, and neuroendocrine function [43].
Inflammation is increasingly known as a key process underlying metabolic diseases in obese subjects [44]. In particular, adipose tissue-related production of proinflammatory molecules (TNF-α, IL-1β, IL-6, IL-8, transforming growth factor-β, and nerve growth factor) as well as its acute-phase response (plasminogen activator inhibitor-1, haptoglobin, and serum amyloid A) [45] detected during obesity contributes to a low grade of systemic inflammation seen in chronic diseases associated with MS [46–49]. In obese subjects, adiponectin levels are decreased, and the ability of adiponectin to inhibit the inflammatory processes is limited. Low adiponectin levels are inversely related to high levels of C-reactive protein (CRP) in patients with obesity, type 2 diabetes, and CVD [50–52]. In fact, CRP may promote the formation of intimal neovessels in vulnerable atherosclerotic plaques increasing the likelihood of rupture [53].
In mice fed a high-fat diet, weight gain is associated with an induction of adipose tissue-related inflammatory pathways. Thus a high percentage (>50%) of the total adipose tissue mRNA transcripts found to be upregulated during diet-induced weight gain is inflammatory-related genes [47]. In fact, overexpression of low-density lipoprotein receptor-related protein-1 and very low-density lipoprotein receptor in epicardial fat may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus [54]. Thus, 12/15- lipoxygenases (ALOX) and their lipid metabolites, involved in the oxidative metabolism of polyunsaturated fatty acids, act as upstream regulators of many of the cytokines involved in the adipose tissue-related inflammatory response contributing to the development of insulin resistance and diabetes [55]. The gene expression and localization of ALOX isoforms have shown to be exclusively expressed in human visceral fat [56].
Resistin and TNF-α are adipokines that have been implicated in insulin resistance in skeletal muscle by the addition of fatty acids to the diacylglycerol [57, 58]. Adipocytes are sensitive to the effects of TNF-α, which, through its p55 and p75 TNF receptors, stimulates nuclear factor- (NF-) κB, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinases PI-3 kinase and junN-terminal kinase cascades [59]. The correlation between insulin resistance, chronic inflammation, hypertension, endothelial dysfunction, and dyslipidemia could be due to the activation of NF-κB [60]. The transcription factor NF-κB and the TNF-α gene promoter were activated by hypoxia in adipocytes and fibroblasts [61]. NF-κB signaling represses E2F transcription factors eventually inhibiting adipogenesis and maintaining a chronic inflammatory condition [62]. In contrast, hypoxia reduced adiponectin expression, detected d in adipocytes gene promoter [61].
TNF-α is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-α are implicated in the induction of atherogenic adipokines, such as PAI-1 and IL-6, and the inhibition of the antiatherogenic adipokine, adiponectin [63].
Obese individuals have increased TNF-α gene expression, as shown by a study in which a 2.5-fold increases in mRNA. Also a strong positive correlation has been detected between TNF-α mRNA expression levels and the level of hyperinsulinemia (an indirect measure of insulin resistance) in fat tissue [64].
3.1. Role of Adipokines in Chronic Inflammation State: Rheumatoid Arthritis (RA)
Adipokines exert potent modulatory actions on target tissues and cells involved in rheumatic disease [65] and obesity-related diseases [66, 67]. For establishing a relationship with the obesity, using RA as a model, we discuss the participation of adipokines in a chronic inflammation state.
Adiponectin in RA. A complex adipokine-mediated interaction among white adipose tissue, CVD, and chronic inflammatory autoimmune diseases like RA has been described [68]. In this regard, in RA adipocytes and their surrounding macrophages produce a range of adipokines that regulate systemic inflammation [68]. In RA patients undergoing anti-TNF infliximab therapy because of severe disease, high-grade inflammation shows an independent and negative correlation with circulating adiponectin concentrations, whereas low adiponectin levels clustered with MS features such as dyslipidemia and high plasma glucose levels that have been reportedly to contribute to atherogenesis in RA [69].
Leptin in RA. In patients undergoing anti-TNF-α therapy because of severe disease refractory to conventional therapy, there was a positive correlation between body mass index in patients with RA and leptin serum levels [70]. In addition, these patients showed a significant correlation between leptin levels and VCAM-1 [70, 71]. This is of potential interest as biomarkers of endothelial dysfunction-endothelial cell activation are elevated in patients with RA and anti-TNF blockade improved endothelial dysfunction [72] as well as decreased the levels of endothelial cell activation biomarkers [73].
Resistin in RA. In patients with RA in treatment with the anti-TNF-α monoclonal antibody infliximab for severe disease refractory to conventional therapy, a positive correlation between markers of inflammation, in particular with C-reactive protein, and resistin levels was observed [74]. TNF-α blockade led to a rapid reduction in the levels of resistin in these patients [74]. These results highlight a potential role of resistin in the inflammatory cascade in diseases like RA that are associated with chronic inflammatory burden [74].
3.2. Leukocytes and Adipose Tissue Inflammation
Macrophage and lymphocyte infiltration in adipose tissue may greatly contribute to obesity-related metabolic dysfunction and chronic inflammation [75, 76]. Recent studies have demonstrated that over 90% of the adipokine release by adipose tissue, except for adiponectin and leptin, could be attributed to nonfat cells [77]. The sequence of events in the inflammatory cascade within the adipose tissue comprises immune cells, first lymphocytes, and then macrophages [78, 79].
T lymphocytes present in visceral adipose tissue contribute to the initiation and perpetuation of adipose tissue inflammation and the development of insulin resistance [80]. Thus it is observed that a large number of CD8+ effector T cell infiltrate adipose tissue promoting the recruitment and activation of macrophages in obese mice, while the number of CD4+ T cell and regulatory T is diminished (Figure 1) [79]. White adipose tissue hypoxia and CD8+ T cell invasion are features of obesity in C57BL/6J mice and are potential contributors to their local and generalized inflammatory state [81].
Figure 1.
Leukocytes and adipose tissue inflammation. Macrophage and lymphocyte infiltration in adipose tissue may greatly contribute to obesity-related metabolic dysfunction and chronic inflammation. CVD: cardiovascular diseases.
Natural killer T (NTK) cells play a crucial role in the development of adipose tissue inflammation and glucose intolerance in diet-induced obesity [82]. However, the deletion of NKT cells, in the absence of alterations in the CD8+ T cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity [83].
Macrophage can be characterized as M1-type (involved in proinflammatory processes such as TNF-α, IL-6, and IL-12) or immunomodulatory and tissue remodeling (M2). The latter can secrete IL-10, which is an anti-inflammatory cytokine and partake mostly in the downregulation of proinflammatory cytokines [84, 85]. Infiltrated macrophages play the most prominent role, and this low grade inflammation is mediated by the activation and recruitment of macrophages into expanding adipose tissue [12, 86]. In this context, it has been established that the diet-induced obesity leads to a shift in the activation state of adipose tissue macrophages from an M2-type to an M1 proinflammatory state that contributes to insulin resistance [87, 88].
3.3. Adiponectin as a Regulator of Inflammation
Adiponectin is an abundantly expressed adipokine in adipose tissue and has multiple effects on glucose, metabolism of lipids and free fatty acids, cytokine secretion, and direct insulin sensitizing activity [89, 90].
An increase of adiponectin concentrations or the maintenance of higher concentration may be negatively associated with CVD and diabetes, especially in patients with high glycaemic level and independent of adiposity and smoking status [91, 92]. Adiponectin has antiatherosclerotic as well as anti-inflammatory properties that may play an important role in preventing the progression of coronary artery disease [93, 94]. In this context, adiponectin acts on cultured murine and human macrophages to promote a switch to an anti-inflammatory M2 phenotype [95]. Adiponectin can either act directly on macrophages to shift polarization or prime human monocyte differentiation into anti-inflammatory M2 macrophages [95, 96]. Possible pathways of action of adiponectin that leads to a shift in macrophages to an antiinflammatory phenotype include (i) AdipoR1 → IL-10 → HO-1-dependent pathway to decrease TLR4 expression and dampen inflammatory cytokine expression in macrophages and (ii) AdipoR2 → IL-4 → STAT6-dependent signaling pathway that leads to a shift in macrophages to an M2 polarization [97, 98].
Genetic variations in adiponectin receptors (AdipoR1 or AdipoR2) are unlikely to lead to a common genetic predisposition to insulin resistance or type 2 diabetes [99, 100]. Thus, an independent inverse correlation between plasma adiponectin levels and hs-CRP may suggest that decrease of adiponectin contributes to the systemic and vascular inflammation commonly found in obesity [50]. However, patients with advanced heart failure present increased adiponectin with reduced expression of AdipoR1 and AdipoR2 as well as reduced activation of AMP kinase, a known downstream signaling molecule, suggesting a functional adiponectin resistance in advanced heart failure [101]. Also, high levels of adiponectin have been found in chronic inflammatory autoimmune diseases such as SLE, type I diabetes, and rheumatoid arthritis [102–104].
Interactions of genetic factors such as single nucleotide polymorphisms (SNPs) in the adiponectin gene and environmental factors causing obesity result in hypoadiponectinaemia, which appears to play an important causal role in obesity-linked insulin resistance, type 2 diabetes, and the MS [105]. In women with MS, visceral fat volume was negatively related to leptin and tended to be negatively related to adiponectin gene expression [106].
The major genetic modifications of adiponectin are due to oxidative stress generated during obesity. Thus obese subjects exhibit increased systemic oxidative stress, likely derived from the accumulated fat, being an early instigator of MS [32]. A study of 2828 subjects showed that smoking, diabetes, and body mass index were highly associated with systemic oxidative stress and suggest an important role on obesity [107]. Lipid-rich diets are also capable of generating reactive oxygen species because they can alter oxygen metabolism [108]. Increase of free radicals together with low antioxidant capacity detected in obese adults indicate an elevated oxidative stress, which is, in concurrence with systemic inflammation, further potentiated in the case of patients with metabolic syndrome [109].
An increased oxidative stress is also associated with adiponectin deficiency [110]. Increased oxidative stress has shown to inhibit preadipocyte differentiation as a result of reduced cell proliferation and an inhibition of G(1)→S-phase transition through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters [111]. Abdominal adiposity and leptin are independent predictors of adiponectin gene expression, and in human adipocytes, adiponectin gene expression is strongly related to IκB-α mRNA [112]. The significant independent relationship between adiponectin gene expression and IκB-α mRNA suggests that when adiponectin gene expression is high, there is a higher expression of IκB-α and the subsequent inhibition of NF-kB transcriptional activity with lower inflammation at the adipocyte level [112].
Adipokine zinc-alpha2-glycoprotein (ZAG) gene expression in adipose tissue is downregulated with increased adiposity and circulating insulin. ZAG mRNA is positively correlated with adiponectin mRNA (ZAG enhances adiponectin production by human adipocytes) [113]. The action of ZAG is associated with downregulated lipogenic enzymes (FAS, ACC1, and DGAT mRNA) and upregulated lipolytic enzyme (HSL mRNA) expressions in adipose tissue [114].
Adiponectin gene transcription is stimulated by several transcription factors involved in adipogenesis such as PPARs, FoxO1, C/EBPs, and SREBPs and is suppressed by hypoxia, inflammation, and transcription repressors such as NFATs and CREB. Proinflammatory cytokines such as TNF-α, IL-6, and IL-18 also negatively regulate adiponectin gene transcription by activating several pathways such as the JNK and ERK1/2 pathways [115–117].
4. Molecular Interaction and Gene Expression in Adipose Tissue
Changes in the life style, reduction of obesity, and food habits are fundamental in reducing the risk factors [118]. However, there are key factors in MS regulation that depend on those transcription factors that, by responding and adapting to signals from the environment, are able to change the levels of relevant gene expression [119, 120]. Even, gene expression in the metabolic pathways (apoptosis, lipid metabolism, and inflammation) is directly related to the levels of IgM antioxLDL antibodies [121]. Changes in gene expression of adipose tissue suggest that carbohydrate modification can affect the risk of CVD and type 2 diabetes [122].
The maturation of adipocytes is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion of adipocytes [123]. Meanwhile, the chronic inflammation in adipose tissue is evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity (Figure 2) [124].
Figure 2.
Regulatory pathways of adiponectin in adipose tissue inflammation. M2 type: anti-inflammatory phenotype; MS: metabolic syndrome. ⨁ red circle: inhibition.
PPARs are transcriptions factors of a superfamily of nuclear receptors. Three isoforms exist: PPAR-α, PPAR-β (before PPAR-δ), and PPAR-γ [125]. The gene expression in the adipose tissue of people with MS seems to be affected by changes in tissue morphology or insulin sensitivity, where a diet high in saturated fatty acids produces a proinflammatory state via the repression of PPARs [126]. The double action of PPAR-α and PPAR-γ increases the action of adiponectin and the expression of its receptors, which results in an improvement in obesity and a reduction of the inflammatory process [127].
Adipocytes are a major cell target for PPAR-γ agonists. This class of compounds includes two drugs, pioglitazone and rosiglitazone, that are widely used to treat patients with diabetes [128]. PPAR-γ plays a fundamental role in adipogenesis, as a key regulator in the differentiation and function of adipocytes and the absorption of stored fatty acids [129–131].
Meanwhile, it has been suggested recently that PPAR-γ is also involved as a key regulator of inflammatory and immune response [132]. PPAR-γ is required for maturation of alternatively activated macrophages whatever has a beneficial role in regulating nutrient homeostasis and suggests that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes [133]. However, PPAR-γ activation does not influence M2 marker expression in resting or M1 macrophages, indicating that only native monocytes can be primed by PPAR-γ activation to an enhanced M2 phenotype [134]. In addition, PPAR-γ transcriptional signaling is required for maturation of an anti-inflammatory M2 phenotype, whereas PPAR-δ controls the expression of alternative phenotype in Kupffer cells of obese mice [135].
ApoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity [136]. Increased plasma apoE levels have been shown to reduce systemic markers of oxidant stress [137]. Adipocytes synthesize and secrete apoE, and its regulation by PPAR-γ agonists and TNF-α raises an issue regarding the potential significance of adipocyte-derived apoE [138]. TNF-α suppresses apoE gene expression in adipocytes, and PPAR-γ agonist increases expression of apoE in adipose tissue. Thus TNF-α and PPAR-γ agonists regulate apoE gene response via distinct apoE gene control elements [139]. For PPAR-γ, liver receptor X (LXR) is a key pathway for mediating stimulation of the adipocyte apoE gene [140]. While that TNF-α repression of adipocyte apoE gene expression required an intact NF-κB binding site at −43 in the apoE promoter [141].
On the other hand, the loss of function of PPAR-γ due to dominant mutations brings about a resistance to insulin and the early onset of severe hypertension [142, 143]. Moreover, IL-6 expression in subcutaneous adipose tissue was significantly associated with intermuscular adipose tissue; IL-6 messenger RNA (mRNA) was negatively associated with adiponectin and PPAR-γ expression [35]. Also, loss of PPAR-γ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing MCP-1 expression and macrophage infiltration into white adipose tissue [144].
C/EBPs are a family of transcription factors. At least six members of this family have been isolated and characterized to date (C/EBP-α-C/EBP-ζ) [145]. C/EBP family is essential for the regulation of glucose and lipid homeostasis. C/EBPs-α, β, and δ are tissue specific and highly expressed in adipose tissue [146].
C/EBPs and nuclear factor-Y (NF-Y) are critical for the regulation of the adiponectin expression in response to nutrients and in the course of adipocyte differentiation [147]. Even, the transcriptional activity of adiponectin gene during adipocyte differentiation is enhanced by the motif in a novel adiponectin enhancer region, via the recruitment of the C/EBPs and sterol regulatory element-binding proteins (SREBPs) [148, 149].
The adiponectin promoter was activated by both C/EBP-α and C/EBP-β, and the fold increase by C/EBP-β was larger than that by C/EBP-α [147]. C/EBP-α accesses the adiponectin promoter through two forkhead box protein O1 (Foxo1) binding sites and acts as a coactivator. Further, SIRT1 increases adiponectin transcription in adipocytes by activating Foxo1 and enhancing Foxo1 and C/EBP-α interaction [150]. Thus low expression of SIRT1 and Foxo1 leads to impaired Foxo1-C/EBP-α complex formation, which contributes to the diminished adiponectin expression in obesity and type 2 diabetes [150]. Therefore, C/EBP-α is a key transcription factor for full activation of human adiponectin gene transcription in mature adipocytes through interaction with response elements in the intronic enhancer [151].
However, common allelic variants in CEBP-α and CEBP-β could influence abdominal obesity and related metabolic abnormalities associated with type 2 diabetes and CVD [152]. Meanwhile, activation of PI3 K induced proinflammatory gene expression through activating C/EBP-β and C/EBP-δ but not NF-κB, which may explain the proinflammatory effect of insulin in the insulin-resistant state [153]. In the hyperinsulinaemic state, C/EBP-β leads to the upregulation of CCL2, an inflammation-related protein, which may initiate the process of atherosclerosis [154]. Also C/EBP-β activated the TNF-α gene promoter, confirming its proinflammatory effect [155].
Moreover, adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes [156]. ChREBP-β expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes [157]. Moreover, upregulation of GLUT4 gene transcription might be directly mediated by SREBP-1c in adipose tissue [158].
5. Conclusion
Obesity triggers a chronic inflammatory state that promotes the production of proinflammatory factors contributing to the impairment of the pathogenesis of MS. The participation of leukocytes plays a critical role in the initiation and propagation of adipose tissue inflammation. Most genetic modifications of adiponectin are due to oxidative stress generated during obesity. Adiponectin and PPAR-γ can directly act on macrophages to shift polarization or human monocyte differentiation into anti-inflammatory M2 macrophages. Therefore the clarification of inflammatory processes in the adipose tissue during obesity appears to be essential for the understanding of MS. Thus MS requires the development of new therapeutic strategies addressed to alter the main transcription genetic pathways that regulate adipose tissue metabolism.
Conflict of Interests
The authors report no declarations of interests.
Acknowledgments
This work was funded by the CONICYT REGIONAL/GORE MAULE/CEAP/R09I2001, Programa de Investigación de Excelencia Interdisciplinaria en Envejecimiento Saludable (PIEI-ES), and supported by Grant no. 1130216 (I.P., M.G., R.M., M.A., J.C.) from Fondecyt, Chile, by PNS SAF2010-16549 (to Lina Badimon) from the Spanish Ministry of Science and CIBEROBN06 Insituto Carlos-III (to Lina Badimon). The authors thank Fundacion Jesus Serra, Barcelona, for their continuous support. Gemma Vilahur is a recipient of a Grant from the Science and Education Spanish Ministry (RyC-2009-5495, MICINN, Spain).
References
- 1.Lakka H-M, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. Journal of the American Medical Association. 2002;288(21):2709–2716. doi: 10.1001/jama.288.21.2709. [DOI] [PubMed] [Google Scholar]
- 2.Sattar N, Gaw A, Scherbakova O, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108(4):414–419. doi: 10.1161/01.CIR.0000080897.52664.94. [DOI] [PubMed] [Google Scholar]
- 3.Palomo I, Moore-Carrasco R, Alarcon M, et al. Pathophysiology of the proatherothrombotic state in the metabolic syndrome. Frontiers in Bioscience. 2010;2:194–208. doi: 10.2741/s57. [DOI] [PubMed] [Google Scholar]
- 4.Palomo I, Toro C, Alarcón M. The role of platelets in the pathophysiology of atherosclerosis (review) Molecular Medicine Reports. 2008;1(2):179–184. [PubMed] [Google Scholar]
- 5.Aledo R, Alonso R, Mata P, Llorente-Cortés V, Padro T, Badimon L. LRP1 gene polymorphisms are associated with premature risk of cardiovascular disease in patients with familial hypercholesterolemia. Revista Española de Cardiología. 2012;65:807–812. doi: 10.1016/j.recesp.2012.03.013. [DOI] [PubMed] [Google Scholar]
- 6.Vera RH, Vilahur G, Ferrer-Lorente R, Pena E, Badimon L. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32:2141–2148. doi: 10.1161/ATVBAHA.112.255281. [DOI] [PubMed] [Google Scholar]
- 7.Vera RH, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker fatty rats. Thrombosis and Haemostasis. 2012;109:319–327. doi: 10.1160/TH12-09-0696. [DOI] [PubMed] [Google Scholar]
- 8.Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Current Pharmaceutical Design. 2011;17(1):47–58. doi: 10.2174/138161211795049804. [DOI] [PubMed] [Google Scholar]
- 9.Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nature Medicine. 2009;15(4):373–374. doi: 10.1038/nm0409-373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Badimon L, Storey RF, Vilahur G. Update on lipids, inflammation and atherothrombosis. Thrombosis and Haemostasis. 2011;105(supplement 1):S34–S42. doi: 10.1160/THS10-11-0717. [DOI] [PubMed] [Google Scholar]
- 11.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. doi: 10.1126/science.7678183. [DOI] [PubMed] [Google Scholar]
- 12.Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW., Jr. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation. 2003;112(12):1796–1808. doi: 10.1172/JCI19246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Orio F, Jr., Palomba S, Cascella T, Savastano S, Lombardi G, Colao A. Cardiovascular complications of obesity in adolescents. Journal of Endocrinological Investigation. 2007;30(1):70–80. doi: 10.1007/BF03347399. [DOI] [PubMed] [Google Scholar]
- 14.Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. Journal of Clinical Endocrinology and Metabolism. 2004;89(6):2595–2600. doi: 10.1210/jc.2004-0372. [DOI] [PubMed] [Google Scholar]
- 15.Steiner G, Cahill GF., Jr. Adipose tissue physiology. Annals of the New York Academy of Sciences. 1963;110:749–753. doi: 10.1111/j.1749-6632.1963.tb15795.x. [DOI] [PubMed] [Google Scholar]
- 16.Hajer GR, Van Haeften TW, Visseren FLJ. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European Heart Journal. 2008;29(24):2959–2971. doi: 10.1093/eurheartj/ehn387. [DOI] [PubMed] [Google Scholar]
- 17.Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology. 2006;24(4):150–154. doi: 10.1016/j.tibtech.2006.01.010. [DOI] [PubMed] [Google Scholar]
- 18.Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. Journal of Clinical Endocrinology and Metabolism. 2004;89(6):2548–2556. doi: 10.1210/jc.2004-0395. [DOI] [PubMed] [Google Scholar]
- 19.Nishimura S, Manabe I, Nagai R. Adipose tissue inflammation in obesity and metabolic syndrome. Discovery medicine. 2009;8(41):55–60. [PubMed] [Google Scholar]
- 20.Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network. 2006;17(1):4–12. [PubMed] [Google Scholar]
- 21.Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocrine Journal. 2008;55(4):617–624. doi: 10.1507/endocrj.k07e-110. [DOI] [PubMed] [Google Scholar]
- 22.Pérez PM, Moore-Carrasco R, González DR, Fuentes EQ, Palomo IG. Gene expression of adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome (review) Molecular Medicine Reports. 2012;5(5):1135–1140. doi: 10.3892/mmr.2012.785. [DOI] [PubMed] [Google Scholar]
- 23.Salmenniemi U, Ruotsalainen E, Pihlajamäki J, et al. Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome. Circulation. 2004;110(25):3842–3848. doi: 10.1161/01.CIR.0000150391.38660.9B. [DOI] [PubMed] [Google Scholar]
- 24.Mujica V, Leiva E, Icaza G, et al. Evaluation of metabolic syndrome in adults of Talca city, Chile. Nutrition Journal. 2008;7(1, article 14) doi: 10.1186/1475-2891-7-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Palomo I, Contreras A, Alarcón LM, et al. Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric Oxide. 2011;24(4):224–228. doi: 10.1016/j.niox.2011.03.002. [DOI] [PubMed] [Google Scholar]
- 26.Palomo I, Alarcón M, Moore-Carrasco R, Argilés JM. Hemostasis alterations in metabolic syndrome (review) International Journal of Molecular Medicine. 2006;18(5):969–974. [PubMed] [Google Scholar]
- 27.Palomo IG, Jaramillo JC, Alarcón ML, et al. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome. Molecular Medicine Reports. 2009;2(3):481–485. doi: 10.3892/mmr_00000125. [DOI] [PubMed] [Google Scholar]
- 28.Gómez JM, Vila R, Catalina P, Soler J, Badimón L, Sahún M. The markers of inflammation and endothelial dysfunction in correlation with glycated haemoglobin are present in type 2 diabetes mellitus patients but not in their relatives. Glycoconjugate Journal. 2008;25(6):573–579. doi: 10.1007/s10719-008-9118-8. [DOI] [PubMed] [Google Scholar]
- 29.Palomo IG, Gutiérrez CL, Alarcón ML, et al. Increased concentration of plasminogen activator inhibitor-1 and fibrinogen in individuals with metabolic syndrome. Molecular Medicine Reports. 2009;2(2):253–257. doi: 10.3892/mmr_00000092. [DOI] [PubMed] [Google Scholar]
- 30.Krupinski J, Turu MM, Font MA, et al. Increased tissue factor, MMP-8, and D-dimer expression in diabetic patients with unstable advanced carotid atherosclerosis. Vascular Health and Risk Management. 2007;3(4):405–412. [PMC free article] [PubMed] [Google Scholar]
- 31.Salmenniemi U, Ruotsalainen E, Vänttinen M, et al. High amount of visceral fat mass is associated with multiple metabolic changes in offspring of type 2 diabetic patients. International Journal of Obesity. 2005;29(12):1464–1470. doi: 10.1038/sj.ijo.0803041. [DOI] [PubMed] [Google Scholar]
- 32.Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. 2004;114(12):1752–1761. doi: 10.1172/JCI21625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Satoh M, Andoh Y, Clingan CS, et al. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue inflammation, steatohepatitis and insulin resistance. PLoS One. 2012;7(2) doi: 10.1371/journal.pone.0030568.e30568 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Madsen EL, Rissanen A, Bruun JM, et al. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. European Journal of Endocrinology. 2008;158(2):179–187. doi: 10.1530/EJE-07-0721. [DOI] [PubMed] [Google Scholar]
- 35.Zoico E, Rossi A, Di Francesco V, et al. Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. Journals of Gerontology A. 2010;65(3):295–299. doi: 10.1093/gerona/glp155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Barreda R, Ros PR. Diagnostic imaging of liver abscess. Critical Reviews in Diagnostic Imaging. 1991;33(1-2):29–58. [PubMed] [Google Scholar]
- 37.Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. Journal of Clinical Endocrinology and Metabolism. 2004;89(2):447–452. doi: 10.1210/jc.2003-031005. [DOI] [PubMed] [Google Scholar]
- 38.Omran SA, Amer AM, el-Kaliouby AH, Eldin AA. Study of contact activation in endemic hepatosplenomegaly. Blood Coagulation & Fibrinolysis. 1991;2(5):659–662. doi: 10.1097/00001721-199110000-00012. [DOI] [PubMed] [Google Scholar]
- 39.Ryan AS, Berman DM, Nicklas BJ, et al. Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care. 2003;26(8):2383–2388. doi: 10.2337/diacare.26.8.2383. [DOI] [PubMed] [Google Scholar]
- 40.Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. European Journal of Endocrinology. 2002;147(2):173–180. doi: 10.1530/eje.0.1470173. [DOI] [PubMed] [Google Scholar]
- 41.Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116(2):337–350. doi: 10.1016/s0092-8674(03)01081-x. [DOI] [PubMed] [Google Scholar]
- 42.Onate B, Vilahur G, Ferrer-Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26:4327–4336. doi: 10.1096/fj.12-207217. [DOI] [PubMed] [Google Scholar]
- 43.Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006;14(supplement 5):242S–249S. doi: 10.1038/oby.2006.317. [DOI] [PubMed] [Google Scholar]
- 44.Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. Journal of Clinical Investigation. 2011;121(6):2111–2117. doi: 10.1172/JCI57132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition. 2004;92(3):347–355. doi: 10.1079/bjn20041213. [DOI] [PubMed] [Google Scholar]
- 46.Badimon L, Romero JC, Cubedo J, Borrell-Pages M. Circulating biomarkers. Thrombosis Research. 2012;130(supplement 1):S12–S15. doi: 10.1016/j.thromres.2012.08.262. [DOI] [PubMed] [Google Scholar]
- 47.Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation. 2003;112(12):1821–1830. doi: 10.1172/JCI19451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American Journal of Physiology. 2001;280(5):E745–E751. doi: 10.1152/ajpendo.2001.280.5.E745. [DOI] [PubMed] [Google Scholar]
- 49.Shimomura I, Funahashi T, Takahashi M, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Medicine. 1996;2(7):800–803. doi: 10.1038/nm0796-800. [DOI] [PubMed] [Google Scholar]
- 50.Engeli S, Feldpausch M, Gorzelniak K, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes. 2003;52(4):942–947. doi: 10.2337/diabetes.52.4.942. [DOI] [PubMed] [Google Scholar]
- 51.Krakoff J, Funahashi T, Stehouwer CDA, et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care. 2003;26(6):1745–1751. doi: 10.2337/diacare.26.6.1745. [DOI] [PubMed] [Google Scholar]
- 52.Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107(5):671–674. doi: 10.1161/01.cir.0000055188.83694.b3. [DOI] [PubMed] [Google Scholar]
- 53.Turu MM, Slevin M, Matou S, et al. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression. BMC Cell Biology. 2008;9, article 47 doi: 10.1186/1471-2121-9-47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Nasarre L, Juan-Babot O, Gastelurrutia P, et al. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetologica. 2012 doi: 10.1007/s00592-012-0436-8. [DOI] [PubMed] [Google Scholar]
- 55.Chakrabarti SK, Cole BK, Wen Y, Keller SR, Nadler JL. 12/15-Lipoxygenase products induce inflammation and impair insulin signaling in 3t3-l1 adipocytes. Obesity. 2009;17(9):1657–1663. doi: 10.1038/oby.2009.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Dobrian AD, Lieb DC, Ma Q, et al. Differential expression and localization of 12/15 lipoxygenases in adipose tissue in human obese subjects. Biochemical and Biophysical Research Communications. 2010;403(3-4):485–490. doi: 10.1016/j.bbrc.2010.11.065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-α . American Journal of Physiology. 2004;287(4):E616–E621. doi: 10.1152/ajpendo.00150.2004. [DOI] [PubMed] [Google Scholar]
- 58.Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Applied Physiology, Nutrition and Metabolism. 2009;34(3):396–402. doi: 10.1139/H09-037. [DOI] [PubMed] [Google Scholar]
- 59.Rydén M, Dicker A, Van Harmelen V, et al. Mapping of early signaling events in tumor necrosis factor-α-mediated lipolysis in human fat cells. Journal of Biological Chemistry. 2002;277(2):1085–1091. doi: 10.1074/jbc.M109498200. [DOI] [PubMed] [Google Scholar]
- 60.Kaidashev IP. NF-kB activation as a molecular basis of pathological process by metabolic syndrome. Fiziolohichnyi Zhurnal. 2012;58:93–101. [PubMed] [Google Scholar]
- 61.Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology. 2007;293(4):E1118–E1128. doi: 10.1152/ajpendo.00435.2007. [DOI] [PubMed] [Google Scholar]
- 62.Araki K, Kawauchi K, Tanaka N. IKK/NF-κB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene. 2008;27(43):5696–5705. doi: 10.1038/onc.2008.184. [DOI] [PubMed] [Google Scholar]
- 63.Ahn J, Lee H, Kim S, Ha T. Resveratrol inhibits TNF-α-induced changes of adipokines in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications. 2007;364(4):972–977. doi: 10.1016/j.bbrc.2007.10.109. [DOI] [PubMed] [Google Scholar]
- 64.Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. Journal of Clinical Investigation. 1995;95(5):2409–2415. doi: 10.1172/JCI117936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Gómez R, Conde J, Scotece M, Gómez-Reino JJ, Lago F, Gualillo O. What’s new in our understanding of the role of adipokines in rheumatic diseases? Nature Reviews Rheumatology. 2011;7(9):528–536. doi: 10.1038/nrrheum.2011.107. [DOI] [PubMed] [Google Scholar]
- 66.Lago F, Dieguez C, Gómez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nature Clinical Practice Rheumatology. 2007;3(12):716–724. doi: 10.1038/ncprheum0674. [DOI] [PubMed] [Google Scholar]
- 67.Lago F, Gómez R, Gómez-Reino JJ, Dieguez C, Gualillo O. Adipokines as novel modulators of lipid metabolism. Trends in Biochemical Sciences. 2009;34(10):500–510. doi: 10.1016/j.tibs.2009.06.008. [DOI] [PubMed] [Google Scholar]
- 68.Ferraz-Amaro I, Gonzalez-Juanatey C, Lopez-Mejias R, Riancho-Zarrabeitia L, Gonzalez-Gay MA. Metabolic syndrome in rheumatoid arthritis. Mediators of Inflammation. 2013;2013:7 pages. doi: 10.1155/2013/710928.710928 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Gonzalez-Gay MA, Llorca J, Garcia-Unzueta MT, et al. High-grade inflammation, circulating adiponectin concentrations and cardiovascular risk factors in severe rheumatoid arthritis. Clinical and Experimental Rheumatology. 2008;26(4):596–603. [PubMed] [Google Scholar]
- 70.Gonzalez-Gay MA, Garcia-Unzueta MT, Berja A, et al. Anti-TNF-α therapy does not modulate leptin in patients with severe rheumatoid arthritis. Clinical and Experimental Rheumatology. 2009;27(2):222–228. [PubMed] [Google Scholar]
- 71.Conde J, Scotece M, Lopez V, et al. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PLoS One. 2012;7 doi: 10.1371/journal.pone.0052533.e52533 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Gonzalez-Juanatey C, Llorca J, Sanchez Andrade A, Garcia-Porrua C, Martin J, Gonzalez-Gay MA. Short-term adalimumab therapy improves endothelial function in patients with rheumatoid arthritis refractory to infliximab. Clinical and Experimental Rheumatology. 2006;24(3):309–312. [PubMed] [Google Scholar]
- 73.Gonzales-Gay MA, Garcia-Unzueta MT, De Matias JM, et al. Influence of anti-TNF-α infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology. 2006;24(4):373–379. [PubMed] [Google Scholar]
- 74.Gonzalez-Gay MA, Garcia-Unzueta MT, Gonzalez-Juanatey C, et al. Anti-TNF-α therapy modulates resistin in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology. 2008;26(2):311–316. [PubMed] [Google Scholar]
- 75.Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design. 2008;14(12):1225–1230. doi: 10.2174/138161208784246153. [DOI] [PubMed] [Google Scholar]
- 76.Badimon L. Interleukin-18: a potent pro-inflammatory cytokine in atherosclerosis. Cardiovascular Research. 2012;96:172–175. doi: 10.1093/cvr/cvs226. [DOI] [PubMed] [Google Scholar]
- 77.Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–2282. doi: 10.1210/en.2003-1336. [DOI] [PubMed] [Google Scholar]
- 78.Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research. 2005;46(11):2347–2355. doi: 10.1194/jlr.M500294-JLR200. [DOI] [PubMed] [Google Scholar]
- 79.Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine. 2009;15(8):914–920. doi: 10.1038/nm.1964. [DOI] [PubMed] [Google Scholar]
- 80.Kintscher U, Hartge M, Hess K, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(7):1304–1310. doi: 10.1161/ATVBAHA.108.165100. [DOI] [PubMed] [Google Scholar]
- 81.Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. International Journal of Obesity. 2008;32(3):451–463. doi: 10.1038/sj.ijo.0803744. [DOI] [PubMed] [Google Scholar]
- 82.Ohmura K, Ishimori N, Ohmura Y, et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(2):193–199. doi: 10.1161/ATVBAHA.109.198614. [DOI] [PubMed] [Google Scholar]
- 83.Mantell BS, Stefanovic-Racic M, Yang X, Dedousis N, Sipula IJ, O’Doherty RM. mice lacking NKT cells but with a complete complement of CD8+ T-Cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS One. 2011;6(6) doi: 10.1371/journal.pone.0019831.e19831 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidbal JG. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Human Molecular Genetics. 2009;18(3):482–496. doi: 10.1093/hmg/ddn376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Ishii M, Wen H, Corsa CAS, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114(15):3244–3254. doi: 10.1182/blood-2009-04-217620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Bouloumié A, Curat CA, Sengenès C, Lolmède K, Miranville A, Busse R. Role of macrophage tissue infiltration in metabolic diseases. Current Opinion in Clinical Nutrition & Metabolic Care. 2005;8:347–354. doi: 10.1097/01.mco.0000172571.41149.52. [DOI] [PubMed] [Google Scholar]
- 87.Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation. 2007;117(1):175–184. doi: 10.1172/JCI29881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Lumeng CN, Delproposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57(12):3239–3246. doi: 10.2337/db08-0872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Salmenniemi U, Zacharova J, Ruotsalainen E, et al. Association of adiponectin level and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. Journal of Clinical Endocrinology and Metabolism. 2005;90(7):4216–4223. doi: 10.1210/jc.2004-2289. [DOI] [PubMed] [Google Scholar]
- 90.Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–469. doi: 10.1007/s00125-003-1074-z. [DOI] [PubMed] [Google Scholar]
- 91.Kim OY, Koh SJ, Jang Y, et al. Plasma adiponectin is related to other cardiovascular risk factors in nondiabetic Korean men with CAD, independent of adiposity and cigarette smoking: cross-sectional analysis. Clinica Chimica Acta. 2006;370(1-2):63–71. doi: 10.1016/j.cca.2006.01.021. [DOI] [PubMed] [Google Scholar]
- 92.Sans S, Padro T, Tuomilehto J, Badimon L. Incidence of diabetes and serum adipokines in Catalonian men. The ADIPOCAT study. Annals of Medicine. 2012;45(1):97–102. doi: 10.3109/07853890.2012.679958. [DOI] [PubMed] [Google Scholar]
- 93.Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–2476. doi: 10.1161/01.cir.100.25.2473. [DOI] [PubMed] [Google Scholar]
- 94.Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(1):85–89. doi: 10.1161/01.atv.0000048856.22331.50. [DOI] [PubMed] [Google Scholar]
- 95.Ohashi K, Parker JL, Ouchi N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. Journal of Biological Chemistry. 2010;285(9):6153–6160. doi: 10.1074/jbc.M109.088708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Lovren F, Pan Y, Quan A, et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. American Journal of Physiology. 2010;299(3):H656–H663. doi: 10.1152/ajpheart.00115.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Mandal P, Park P-H, McMullen MR, Pratt BT, Nagy LE. The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependent pathway in rat kupffer cells. Hepatology. 2010;51(4):1420–1429. doi: 10.1002/hep.23427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Mandal P, Pratt BT, Barnes M, McMullen MR, Nagy LE. Molecular mechanism for adiponectin-dependent m2 macrophage polarization link between the metabolic and innate immune activity of full-length adiponectin. Journal of Biological Chemistry. 2011;286(15):13460–13469. doi: 10.1074/jbc.M110.204644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Hara K, Horikoshi M, Kitazato H, et al. Absence of an association between the polymorphisms in the genes encoding adiponectin receptors and type 2 diabetes. Diabetologia. 2005;48(7):1307–1314. doi: 10.1007/s00125-005-1806-3. [DOI] [PubMed] [Google Scholar]
- 100.Collins SC, Luan J, Thompson AJ, et al. Adiponectin receptor genes: mutation screening in syndromes of insulin resistance and association studies for type 2 diabetes and metabolic traits in UK populations. Diabetologia. 2007;50(3):555–562. doi: 10.1007/s00125-006-0534-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Khan RS, Kato TS, Chokshi A, et al. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: correction after ventricular assist device implantation. Circulation. 2012;5:340–348. doi: 10.1161/CIRCHEARTFAILURE.111.964031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Aprahamian T, Bonegio RG, Richez C, et al. The peroxisome proliferator-activated receptor γ agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. Journal of Immunology. 2009;182(1):340–346. doi: 10.4049/jimmunol.182.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Choi H-M, Lee Y-A, Lee S-H, et al. Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Research and Therapy. 2009;11(6, article no. R161) doi: 10.1186/ar2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Lindström T, Frystyk J, Hedman CA, Flyvbjerg A, Arnqvist HJ. Elevated circulating adiponectin in type 1 diabetes is associated with long diabetes duration. Clinical Endocrinology. 2006;65(6):776–782. doi: 10.1111/j.1365-2265.2006.02666.x. [DOI] [PubMed] [Google Scholar]
- 105.Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K. Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Foundation Symposium. 2007;286:164–176. doi: 10.1002/9780470985571.ch15. [DOI] [PubMed] [Google Scholar]
- 106.You T, Yang R, Lyles MF, Gong D, Nicklas BJ. Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors. American Journal of Physiology. 2005;288(4):E741–E747. doi: 10.1152/ajpendo.00419.2004. [DOI] [PubMed] [Google Scholar]
- 107.Keaney JF, Jr., Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(3):434–439. doi: 10.1161/01.ATV.0000058402.34138.11. [DOI] [PubMed] [Google Scholar]
- 108.Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. Journal of Physiology and Biochemistry. 2012;68(4):701–711. doi: 10.1007/s13105-012-0154-2. [DOI] [PubMed] [Google Scholar]
- 109.Skalicky J, Muzakova V, Kandar R, Meloun M, Rousar T, Palicka V. Evaluation of oxidative stress and inflammation in obese adults with metabolic syndrome. Clinical Chemistry and Laboratory Medicine. 2008;46(4):499–505. doi: 10.1515/CCLM.2008.096. [DOI] [PubMed] [Google Scholar]
- 110.Sankhla M, Sharma TK, Mathur K, et al. Relationship of oxidative stress with obesity and its role in obesity induced metabolic syndrome. Clinical Laboratory. 2012;58:385–392. [PubMed] [Google Scholar]
- 111.Findeisen HM, Pearson KJ, Gizard F, et al. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One. 2011;6(4) doi: 10.1371/journal.pone.0018532.e18532 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Zamboni M, Di Francesco V, Garbin U, et al. Adiponectin gene expression and adipocyte NF-κB transcriptional activity in elderly overweight and obese women: inter-relationships with fat distribution, hs-CRP, leptin and insulin resistance. International Journal of Obesity. 2007;31(7):1104–1109. doi: 10.1038/sj.ijo.0803563. [DOI] [PubMed] [Google Scholar]
- 113.Mracek T, Ding Q, Tzanavari T, et al. The adipokine zinc-α2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity. Clinical Endocrinology. 2010;72(3):334–341. doi: 10.1111/j.1365-2265.2009.03658.x. [DOI] [PubMed] [Google Scholar]
- 114.Gong F-Y, Zhang S-J, Deng J-Y, et al. Zinc-α2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. International Journal of Obesity. 2009;33(9):1023–1030. doi: 10.1038/ijo.2009.141. [DOI] [PubMed] [Google Scholar]
- 115.Zappalà G, Rechler MM. IGFBP-3, hypoxia and TNF-α inhibit adiponectin transcription. Biochemical and Biophysical Research Communications. 2009;382(4):785–789. doi: 10.1016/j.bbrc.2009.03.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Chandrasekar B, Patel DN, Mummidi S, Kim JW, Clark RA, Valente AJ. Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving erk1/2-dependent NFATc4 phosphorylation. Journal of Biological Chemistry. 2008;283(7):4200–4209. doi: 10.1074/jbc.M708142200. [DOI] [PubMed] [Google Scholar]
- 117.Simons PJ, van den Pangaart PS, Aerts JMFG, Boon L. Pro-inflammatory delipidizing cytokines reduces adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. Journal of Endocrinology. 2007;192(2):289–299. doi: 10.1677/JOE-06-0047. [DOI] [PubMed] [Google Scholar]
- 118.Gupta S, Gupta BMM. Metabolic syndrome: diabetes and cardiovascular disease. Indian Heart Journal. 2006;58(2):149–152. [PubMed] [Google Scholar]
- 119.Mujica V, Urzúa A, Leiva E, et al. Intervention with education and exercise reverses the metabolic syndrome in adults. Journal of the American Society of Hypertension. 2010;4(3):148–153. doi: 10.1016/j.jash.2010.02.008. [DOI] [PubMed] [Google Scholar]
- 120.Klimcakova E, Roussel B, Kovacova Z, et al. Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia. 2011;54(4):876–887. doi: 10.1007/s00125-010-2014-3. [DOI] [PubMed] [Google Scholar]
- 121.Bernal-Lopez MR, Garrido-Sanchez L, Gomez-Carrillo V, et al. Antioxidized LDL antibodies are associated with different metabolic pathways in patients with atherosclerotic plaque and type 2 diabetes. Diabetes Care. 2012;36(4):1006–1011. doi: 10.2337/dc12-1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Kallio P, Kolehmainen M, Laaksonen DE, et al. Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT Study. American Journal of Clinical Nutrition. 2007;85(5):1417–1427. doi: 10.1093/ajcn/85.5.1417. [DOI] [PubMed] [Google Scholar]
- 123.Vernochet C, Peres SB, Davis KE, et al. C/EBPα and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor γ agonists. Molecular and Cellular Biology. 2009;29(17):4714–4728. doi: 10.1128/MCB.01899-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Xue B, Sukumaran S, Nie J, Jusko WJ, DuBois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One. 2011;6(2) doi: 10.1371/journal.pone.0017386.e17386 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Jay MA, Ren J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Current Diabetes Reviews. 2007;3(1):33–39. doi: 10.2174/157339907779802067. [DOI] [PubMed] [Google Scholar]
- 126.Van Dijk SJ, Feskens EJM, Bos MB, et al. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. American Journal of Clinical Nutrition. 2009;90(6):1656–1664. doi: 10.3945/ajcn.2009.27792. [DOI] [PubMed] [Google Scholar]
- 127.Tsuchida A, Yamauchi T, Takekawa S, et al. Peroxisome proliferator-activated receptor (PPAR)α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARα, PPARγ, and their combination. Diabetes. 2005;54(12):3358–3370. doi: 10.2337/diabetes.54.12.3358. [DOI] [PubMed] [Google Scholar]
- 128.Lowell BB. PPARγ: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999;99(3):239–242. doi: 10.1016/s0092-8674(00)81654-2. [DOI] [PubMed] [Google Scholar]
- 129.Sugii S, Evans RM. Epigenetic codes of PPARγ in metabolic disease. FEBS Letters. 2011;585(13):2121–2128. doi: 10.1016/j.febslet.2011.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Heikkinen S, Auwerx J, Argmann CA. PPARγ in human and mouse physiology. Biochimica et Biophysica Acta. 2007;1771(8):999–1013. doi: 10.1016/j.bbalip.2007.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biology. 2009;7(article 38) doi: 10.1186/1741-7007-7-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Luconi M, Cantini G, Serio M. Peroxisome proliferator-activated receptor gamma (PPARγ): is the genomic activity the only answer? Steroids. 2010;75(8-9):585–594. doi: 10.1016/j.steroids.2009.10.012. [DOI] [PubMed] [Google Scholar]
- 133.Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447(7148):1116–1120. doi: 10.1038/nature05894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Bouhlel MA, Derudas B, Rigamonti E, et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism. 2007;6(2):137–143. doi: 10.1016/j.cmet.2007.06.010. [DOI] [PubMed] [Google Scholar]
- 135.Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metabolism. 2008;7(6):496–507. doi: 10.1016/j.cmet.2008.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Kawashima Y, Chen J, Sun H, et al. Apolipoprotein e deficiency abrogates insulin resistance in a mouse model of type 2 diabetes mellitus. Diabetologia. 2009;52(7):1434–1441. doi: 10.1007/s00125-009-1378-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Tangirala RK, Praticó D, FitzGerald GA, et al. Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. Journal of Biological Chemistry. 2001;276(1):261–266. doi: 10.1074/jbc.M003324200. [DOI] [PubMed] [Google Scholar]
- 138.Ruan H, Miles PD, Ladd CM, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. 2002;51(11):3176–3188. doi: 10.2337/diabetes.51.11.3176. [DOI] [PubMed] [Google Scholar]
- 139.Yue L, Rasouli N, Ranganathan G, Kern PA, Mazzone T. Divergent effects of peroxisome proliferator-activated receptor γ agonists and tumor necrosis factor α on adipocyte ApoE expression. Journal of Biological Chemistry. 2004;279(46):47626–47632. doi: 10.1074/jbc.M408461200. [DOI] [PubMed] [Google Scholar]
- 140.Yue L, Mazzone T. Peroxisome proliferator-activated receptor γ stimulation of adipocyte ApoE gene transcription mediated by the liver receptor X pathway. Journal of Biological Chemistry. 2009;284(16):10453–10461. doi: 10.1074/jbc.M808482200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Yue L, Christman JW, Mazzone T. Tumor necrosis factor-α-mediated suppression of adipocyte apolipoprotein E gene transcription: primary role for the nuclear factor (NF)-κB pathway and NFκB p50. Endocrinology. 2008;149(8):4051–4058. doi: 10.1210/en.2008-0340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD. Does peroxisome proliferator-activated receptor-γ(PPARγ) protect from hypertension directly through effects in the vasculature? Journal of Biological Chemistry. 2010;285(13):9311–9316. doi: 10.1074/jbc.R109.025031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Halabi CM, Beyer AM, de Lange WJ, et al. Interference with PPARγ function in smooth muscle causes vascular dysfunction and hypertension. Cell Metabolism. 2008;7(3):215–226. doi: 10.1016/j.cmet.2007.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Guri AJ, Hontecillas R, Ferrer G, et al. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. Journal of Nutritional Biochemistry. 2008;19(4):216–228. doi: 10.1016/j.jnutbio.2007.02.010. [DOI] [PubMed] [Google Scholar]
- 145.Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochemical Journal. 2002;365(3):561–575. doi: 10.1042/BJ20020508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Chatterjee R, Bhattacharya P, Gavrilova O, et al. Suppression of the C/EBP family of transcription factors in adipose tissue causes lipodystrophy. Journal of Molecular Endocrinology. 2011;46(3):175–192. doi: 10.1530/JME-10-0172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Park S-K, Oh S-Y, Lee M-Y, Yoon S, Kim K-S, Kim J-W. CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes. 2004;53(11):2757–2766. doi: 10.2337/diabetes.53.11.2757. [DOI] [PubMed] [Google Scholar]
- 148.Koshiishi C, Park H-M, Uchiyama H, Tanaka Y. Regulation of expression of the mouse adiponectin gene by the C/EBP family via a novel enhancer region. Gene. 2008;424(1-2):141–146. doi: 10.1016/j.gene.2008.07.039. [DOI] [PubMed] [Google Scholar]
- 149.Kita A, Yamasaki H, Kuwahara H, et al. Identification of the promoter region required for human adiponectin gene transcription: association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α . Biochemical and Biophysical Research Communications. 2005;331(2):484–490. doi: 10.1016/j.bbrc.2005.03.205. [DOI] [PubMed] [Google Scholar]
- 150.Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein α transcriptional complex. Journal of Biological Chemistry. 2006;281(52):39915–39924. doi: 10.1074/jbc.M607215200. [DOI] [PubMed] [Google Scholar]
- 151.Qiao L, MacLean PS, Schaack J, et al. C/EBPα regulates human adiponectin gene transcription through an intronic enhancer. Diabetes. 2005;54(6):1744–1754. doi: 10.2337/diabetes.54.6.1744. [DOI] [PubMed] [Google Scholar]
- 152.Bennett CE, Nsengimana J, Bostock JA, et al. CCAAT/enhancer binding protein α, β and δ gene variants: associations with obesity related phenotypes in the Leeds Family Study. Diabetes and Vascular Disease Research. 2010;7(3):195–203. doi: 10.1177/1479164110366274. [DOI] [PubMed] [Google Scholar]
- 153.Sekine O, Nishio Y, Egawa K, Nakamura T, Maegawa H, Kashiwagi A. Insulin activates CCAAT/enhancer binding proteins and proinflammatory gene expression through the phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. Journal of Biological Chemistry. 2002;277(39):36631–36639. doi: 10.1074/jbc.M206266200. [DOI] [PubMed] [Google Scholar]
- 154.Sato Y, Nishio Y, Sekine O, et al. Increased expression of CCAAT/enhancer binding protein-beta and -delta and monocyte chemoattractant protein-1 genes in aortas from hyperinsulinaemic rats. Diabetologia. 2007;50(2):481–489. doi: 10.1007/s00125-006-0480-4. [DOI] [PubMed] [Google Scholar]
- 155.Pope RM, Leutz A, Ness SA. C/EBPβ regulation of the tumor necrosis factor α gene. Journal of Clinical Investigation. 1994;94(4):1449–1455. doi: 10.1172/JCI117482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.He Z, Jiang T, Wang Z, Levi M, Li J. Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. American Journal of Physiology. 2004;287(3):E424–E430. doi: 10.1152/ajpendo.00568.2003. [DOI] [PubMed] [Google Scholar]
- 157.Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484(7394):333–338. doi: 10.1038/nature10986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Im S-S, Kwon S-K, Kang S-Y, et al. Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochemical Journal. 2006;399(1):131–139. doi: 10.1042/BJ20060696. [DOI] [PMC free article] [PubMed] [Google Scholar]