Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1982 Aug;2(8):921–929. doi: 10.1128/mcb.2.8.921

Saccharomyces carlsbergensis fdp mutant and futile cycling of fructose 6-phosphate.

M Bañuelos, D G Fraenkel
PMCID: PMC369880  PMID: 6290872

Abstract

In Saccharomyces, the addition of glucose to cells grown in media lacking sugars causes irreversible inactivation of fructose bisphosphatase. One function of this process might be to prevent a futile cycle of formation and hydrolysis of fructose 1,6-bisphosphate. We tested such cycling by assessing the labeling of the 1-position of glucose in polysaccharides from [6-14C]glucose (J.P. Chambost and D. G. Fraenkel, J. Biol. Chem. 225:2867-2869, 1980) by using mutants impaired in glucose growth and known not to inactivate the phosphatase normally (i.e., the fdp mutant of Saccharomyces carlsbergensis [van de Poll et al., J. Bacteriol. 117:965-970, 1974] and the similar cif mutant of Saccharomyces cerevisiae [Navon et al., Biochemistry 18:4487-4499, 1979] ), as well as in the wild-type strain tested in the 1-h period before inactivation is complete. There was marginal, if any, cycling in any situation, and we conclude that the phosphatase activity is controlled by means other than inactivation or that the extent of cycling is too low to be significant, or both. For the fdp mutant data are also presented on growth, rate of glucose metabolism, metabolite accumulations, enzyme levels, and glucose transport, but the primary lesion is unknown.

Full text

PDF
921

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bañuelos M., Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol. 1978 May 30;117(2):197–201. doi: 10.1007/BF00402308. [DOI] [PubMed] [Google Scholar]
  2. Chambost J. P., Fraenkel D. G. The use of 6-labeled glucose to assess futile cycling in Escherichia coli. J Biol Chem. 1980 Apr 10;255(7):2867–2869. [PubMed] [Google Scholar]
  3. Ciriacy M., Breitenbach I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol. 1979 Jul;139(1):152–160. doi: 10.1128/jb.139.1.152-160.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clifton D., Weinstock S. B., Fraenkel D. G. Glycolysis mutants in Saccharomyces cerevisiae. Genetics. 1978 Jan;88(1):1–11. doi: 10.1093/genetics/88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Funayama S., Gancedo J. M., Gancedo C. Turnover of yeast fructose-bisphosphatase in different metabolic conditions. Eur J Biochem. 1980 Aug;109(1):61–66. doi: 10.1111/j.1432-1033.1980.tb04767.x. [DOI] [PubMed] [Google Scholar]
  6. Garfinkel L., Kohn M. C., Garfinkel D. Computer simulation of the fructose bisphosphatase/phosphofructokinase couple in rat liver. Eur J Biochem. 1979 May 2;96(1):183–192. doi: 10.1111/j.1432-1033.1979.tb13028.x. [DOI] [PubMed] [Google Scholar]
  7. Holland J. P., Holland M. J. Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1980 Mar 25;255(6):2596–2605. [PubMed] [Google Scholar]
  8. Katz J., Rognstad R. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry. 1967 Jul;6(7):2227–2247. doi: 10.1021/bi00859a046. [DOI] [PubMed] [Google Scholar]
  9. Koerner T. A., Jr, Voll R. J., Younathan E. S. A proposed model for the regulation of phosphofructokinase and fructose 1,6-bisphosphatase based on their reciprocal anomeric specificities. FEBS Lett. 1977 Dec 15;84(2):207–213. doi: 10.1016/0014-5793(77)80689-3. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lenz A. G., Holzer H. Rapid reversible inactivation of fructose-1,6-bisphosphatase in Saccharomyces cerivisiae by glucose. FEBS Lett. 1980 Jan 14;109(2):271–274. doi: 10.1016/0014-5793(80)81103-3. [DOI] [PubMed] [Google Scholar]
  12. Mazón M. J., Gancedo J. M., Gancedo C. Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J Biol Chem. 1982 Feb 10;257(3):1128–1130. [PubMed] [Google Scholar]
  13. Müller D., Holzer H. Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation. Biochem Biophys Res Commun. 1981 Dec 15;103(3):926–933. doi: 10.1016/0006-291x(81)90899-8. [DOI] [PubMed] [Google Scholar]
  14. Navon G., Shulman R. G., Yamane T., Eccleshall T. R., Lam K. B., Baronofsky J. J., Marmur J. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry. 1979 Oct 16;18(21):4487–4499. doi: 10.1021/bi00588a006. [DOI] [PubMed] [Google Scholar]
  15. Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. J Biol Chem. 1981 Apr 25;256(8):3619–3622. [PubMed] [Google Scholar]
  16. Schamhart D. H., Van Den Heijkant M. P., Van De Poll K. W. Inactivation of fructose diphosphatase by sucrose in yeast. J Bacteriol. 1977 Apr;130(1):526–528. doi: 10.1128/jb.130.1.526-528.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneider R. P., Wiley W. R. Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol. 1971 May;106(2):479–486. doi: 10.1128/jb.106.2.479-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tortora P., Birtel M., Lenz A. G., Holzer H. Glucose-dependent metabolic interconversion of fructose-1, 6-bisphosphatase in yeast. Biochem Biophys Res Commun. 1981 May 29;100(2):688–695. doi: 10.1016/s0006-291x(81)80230-6. [DOI] [PubMed] [Google Scholar]
  19. Ureta T. The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Curr Top Cell Regul. 1978;13:233–258. doi: 10.1016/b978-0-12-152813-3.50011-2. [DOI] [PubMed] [Google Scholar]
  20. Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci U S A. 1981 May;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Silva A. O., Fraenkel D. G. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J Biol Chem. 1979 Oct 25;254(20):10237–10242. [PubMed] [Google Scholar]
  22. den Hollander J. A., Brown T. R., Ugurbil K., Shulman R. G. 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6096–6100. doi: 10.1073/pnas.76.12.6096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van de Poll K. W., Schamhart D. H. Characterization of a regulatory mutant of fructose 1,6-bisphosphatase in Saccharomyces carlsbergensis. Mol Gen Genet. 1977 Jul 7;154(1):61–66. doi: 10.1007/BF00265577. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES