Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1982 Oct;2(10):1220–1228. doi: 10.1128/mcb.2.10.1220

Selective linkage disruption in human-Chinese hamster cell hybrids: deletion mapping of the leuS, hexB, emtB, and chr genes on human chromosome 5.

S Dana, J J Wasmuth
PMCID: PMC369921  PMID: 7177110

Abstract

Chinese hamster-human interspecific hybrid cells, which contain human chromosome 5 and express four genes linked on that chromosome, were subjected to selective conditions requiring them to retain one of the four linked genes, leuS (encoding leucyl-tRNA synthetase), but lose another, either emtB (encoding ribosomal protein S14) or chr. Cytogenetic and biochemical analyses of spontaneous segregants isolated by using these unique selective pressures have enabled us to determine the order and regional location of the leuS, hexB, emtB, and chr genes on human chromosome 5. These segregants arise primarily by terminal deletions of various portions of the long arm of chromosome 5. Our results indicate that the order of at least three of these genes is the same on human chromosome 5 and Chinese hamster chromosome 2. Thus, there appears to be extensive homology between Chinese hamster chromosome 2 and human chromosome 5, which represents an extreme example of the conservation of gene organization between very divergent mammalian species. In addition, these hybrids and selective conditions provide a very simple and quantitative means to assess the potency of various agents suspected of inducing gross chromosomal damage.

Full text

PDF
1220

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgerhout W., van Someren H., Bootsma D. Cytological mapping of the genes assigned to the human A 1 chromosome by use of radiation-induced chromosome breakage in a human-Chinese hamster hybrid cell line. Humangenetik. 1973;20(2):159–162. doi: 10.1007/BF00284852. [DOI] [PubMed] [Google Scholar]
  2. Campbell C. E., Gravel R. A., Worton R. G. Isolation and characterization of Chinese hamster cell mutants resistant to the cytotoxic effects of chromate. Somatic Cell Genet. 1981 Sep;7(5):535–546. doi: 10.1007/BF01549657. [DOI] [PubMed] [Google Scholar]
  3. Campbell C. E., Worton R. G. Linkage of genetic markers emt and chr in Chinese hamster cells. Somatic Cell Genet. 1980 Mar;6(2):215–224. doi: 10.1007/BF01538797. [DOI] [PubMed] [Google Scholar]
  4. Dana S., Wasmuth J. J. Linkage of the leuS, emtB, and chr genes on chromosome 5 in humans and expression of human genes encoding protein synthetic components in human--Chinese hamster hybrids. Somatic Cell Genet. 1982 Mar;8(2):245–264. doi: 10.1007/BF01538680. [DOI] [PubMed] [Google Scholar]
  5. Friend K. K., Chen S., Ruddle F. H. Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain. Somatic Cell Genet. 1976 Mar;2(2):183–188. doi: 10.1007/BF01542631. [DOI] [PubMed] [Google Scholar]
  6. George D. L., Francke U. Evidence for localization of the gene for hexosaminidase B to the cen leads to q13 region of human chromosome 5 using mouse x human hybrid cells. Cytogenet Cell Genet. 1978;22(1-6):408–411. doi: 10.1159/000130984. [DOI] [PubMed] [Google Scholar]
  7. George D. L., Francke U. Regional mapping of human genes for hexosaminidase B and diphtheria toxin sensitivity on chromosome 5 using mouse X human hybrid cells. Somatic Cell Genet. 1977 Nov;3(6):629–638. doi: 10.1007/BF01539070. [DOI] [PubMed] [Google Scholar]
  8. Giles R. E., Shimizu N., Ruddle F. H. Assignment of a human genetic locus to chromosome 5 which corrects the heat sensitive lesion associated with reduced leucyl-tRNA synthetase activity in ts025Cl Chinese hamster cells. Somatic Cell Genet. 1980 Sep;6(5):667–687. doi: 10.1007/BF01538645. [DOI] [PubMed] [Google Scholar]
  9. Goss S. J., Harris H. Gene transfer by means of cell fusion I. Statistical mapping of the human X-chromosome by analysis of radiation-induced gene segregation. J Cell Sci. 1977 Jun;25:17–37. doi: 10.1242/jcs.25.1.17. [DOI] [PubMed] [Google Scholar]
  10. Goss S. J., Harris H. Gene transfer by means of cell fusion. II. The mapping of 8 loci on human chromosome 1 by statistical analysis of gene assortment in somatic cell hybrids. J Cell Sci. 1977 Jun;25:39–57. doi: 10.1242/jcs.25.1.39. [DOI] [PubMed] [Google Scholar]
  11. Goss S. J., Harris H. New method for mapping genes in human chromosomes. Nature. 1975 Jun 26;255(5511):680–684. doi: 10.1038/255680a0. [DOI] [PubMed] [Google Scholar]
  12. Gusella J., Varsanyi-Breiner A., Kao F. T., Jones C., Puck T. T., Keys C., Orkin S., Housman D. Precise localization of human beta-globin gene complex on chromosome 11. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5239–5242. doi: 10.1073/pnas.76.10.5239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Law M. L., Kao F. T. Induced segregation of human syntenic genes by 5-bromodeozyuridine + near-visible light. Somatic Cell Genet. 1978 Jul;4(4):465–476. doi: 10.1007/BF01538867. [DOI] [PubMed] [Google Scholar]
  14. Madjar J. J., Nielsen-Smith K., Frahm M., Roufa D. J. Emetine resistance in chinese hamster ovary cells is associated with an altered ribosomal protein S14 mRNA. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1003–1007. doi: 10.1073/pnas.79.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKusick V. A., Ruddle F. H. The status of the gene map of the human chromosomes. Science. 1977 Apr 22;196(4288):390–405. doi: 10.1126/science.850784. [DOI] [PubMed] [Google Scholar]
  16. Oliver N., Francke U., Pellegrino M. A. Regional assignment of genes for mannose phosphate isomerase, pyruvate kinase-3, and beta 2-microglobulin expression on human chromosome 15 by hybridization of cells from a t(15;22) (q14;q13.3) translocation carrier. Cytogenet Cell Genet. 1978;22(1-6):506–510. doi: 10.1159/000131009. [DOI] [PubMed] [Google Scholar]
  17. Roberts M., Ruddle F. H. The Chinese hamster gene map. Assignment of four genes (DTS, PGM2, 6PGD, EnoI) to chromosome 2. Exp Cell Res. 1980 May;127(1):47–54. doi: 10.1016/0014-4827(80)90413-9. [DOI] [PubMed] [Google Scholar]
  18. Thompson L. H., Harkins J. L., Stanners C. P. A mammalian cell mutant with a temperature-sensitive leucyl-transfer RNA synthetase. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3094–3098. doi: 10.1073/pnas.70.11.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wasmuth J. J., Chu L. Y. Linkage in cultured Chinese hamster cells of two genes, emtB and leuS, involved in protein synthesis and isolation of cell lines with mutations in three linked genes. J Cell Biol. 1980 Dec;87(3 Pt 1):697–702. doi: 10.1083/jcb.87.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wasmuth J. J., Hill J. M., Vock L. S. Biochemical and genetic evidence for a new class of emetine-resistant Chinese hamster cells with alterations in the protein biosynthetic machinery. Somatic Cell Genet. 1980 Jul;6(4):495–516. doi: 10.1007/BF01539152. [DOI] [PubMed] [Google Scholar]
  21. Wasmuth J. J., Hill J. M., Vock L. S. Identification and characterization of a third complementation group of emetine-resistant Chinese hamster cell mutants. Mol Cell Biol. 1981 Jan;1(1):58–65. doi: 10.1128/mcb.1.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Worton R. G., Duff C. Karyotyping. Methods Enzymol. 1979;58:322–344. doi: 10.1016/s0076-6879(79)58148-8. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES