Abstract
The effects of variations in cell density on the expression of the plasminogen activator activity of a tumorigenic rat cell line were analyzed. At low cell densities, the plasminogen activator activity per cell was high and independent of cell density. As the cell density increased, the plasminogen activator activity per cell decreased until it eventually became inversely proportional to cell density. Inhibition of the plasminogen activator activity per cell by increases in cell density was not the result of the presence of a soluble inhibitor but seemed to require cell-to-cell contact. The Vmax per cell for the activation of plasminogen changed at high cell densities, but the Km did not change. This change in the Vmax per cell was in part the result of a change in the catalytic rate constant for the conversion of plasminogen to plasmin. This was inferred from studies on the kinetics of inhibition of plasminogen activator activity by diisopropyl fluorophosphate as a function of cell density. For cells growing at high densities, the rate of inhibition was constant, exhibiting a second-order rate constant of 2.6 × 10−2M−1 s−1. For cells growing at low densities, the plasminogen activator activity was inhibited at two different rates, one exhibiting a second-order rate constant of 2.6 × 10−2M−1 s−1 and the other exhibiting a second-order rate constant of 9.4 × 10−2M−1 s−1. We discuss the importance of cell density in assays of the plasminogen activator activity of cells, the use of this cell line to study the biochemical basis of the density dependence of plasminogen activator activity, and the density-dependent role of plasminogen activator activity in tumor formation and metastasis.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BACHMANN F., FLETCHER A. P., ALKJAERSIG N., SHERRY S. PARTIAL PURIFICATION AND PROPERTIES OF THE PLASMINOGEN ACTIVATOR FROM PIG HEART. Biochemistry. 1964 Oct;3:1578–1585. doi: 10.1021/bi00898a033. [DOI] [PubMed] [Google Scholar]
- Bernik M. B., Kwaan H. C. Origin of fibrinolytic activity in cultures of the human kidney. J Lab Clin Med. 1967 Oct;70(4):650–661. [PubMed] [Google Scholar]
- Bernik M. B., Kwaan H. C. Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest. 1969 Sep;48(9):1740–1753. doi: 10.1172/JCI106140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castellino F. J., Sodetz J. M. Rabbit plasminogen and plasmin isozymes. Methods Enzymol. 1976;45:273–286. doi: 10.1016/s0076-6879(76)45026-7. [DOI] [PubMed] [Google Scholar]
- Chou I. N., O'Donnell S. P., Black P. H., Roblin R. O. Cell density-dependent secretion of plasminogen activator by 3T3 cells. J Cell Physiol. 1977 Apr;91(1):31–37. doi: 10.1002/jcp.1040910104. [DOI] [PubMed] [Google Scholar]
- Christman J. K., Silagi S., Newcomb E. W., Silverstein S. C., Acs G. Correlated suppression by 5-bromodeoxyuridine of tumorigenicity and plasminogen activator in mouse melanoma cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):47–50. doi: 10.1073/pnas.72.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
- Gallimore P. H., McDougall J. K., Chen L. B. In vitro traits of adenovirus-transformed cell lines and their relevance to tumorigenicity in nude mice. Cell. 1977 Apr;10(4):669–678. doi: 10.1016/0092-8674(77)90100-3. [DOI] [PubMed] [Google Scholar]
- Imada M., Sueoka N. Clonal sublines of rat neurotumor RT4 and cell differentiation. I. Isolation and characterization of cell lines and cell type conversion. Dev Biol. 1978 Sep;66(1):97–108. doi: 10.1016/0012-1606(78)90276-2. [DOI] [PubMed] [Google Scholar]
- Imada M., Sueoka N., Rifkin D. B. Clonal sublines of rat neurotumor RT4 and cell differentiation. II. A conversion coupling of tumorigenicity and a glial property. Dev Biol. 1978 Sep;66(1):109–116. doi: 10.1016/0012-1606(78)90277-4. [DOI] [PubMed] [Google Scholar]
- Leytus S. P., Peltz G. A., Liu H. Y., Cannon J. F., Peltz S. W., Livingston D. C., Brocklehurst J. R., Mangel W. F. A quantitative assay for the activation of plasminogen by transformed cells in situ and by urokinase. Biochemistry. 1981 Jul 21;20(15):4307–4314. doi: 10.1021/bi00518a011. [DOI] [PubMed] [Google Scholar]
- Liu H. Y., Peltz G. A., Leytus S. P., Livingston C., Brocklehurst J., Mangel W. F. Sensitive assay for plasminogen activator of transformed cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3796–3800. doi: 10.1073/pnas.77.7.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall C. J., Franks L. M., Carbonell A. W. Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J Natl Cancer Inst. 1977 Jun;58(6):1743–1751. doi: 10.1093/jnci/58.6.1743. [DOI] [PubMed] [Google Scholar]
- Ossowski L., Biegel D., Reich E. Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell. 1979 Apr;16(4):929–940. doi: 10.1016/0092-8674(79)90108-9. [DOI] [PubMed] [Google Scholar]
- Ossowski L., Quigley J. P., Kellerman G. M., Reich E. Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar, and cell migration. J Exp Med. 1973 Nov 1;138(5):1056–1064. doi: 10.1084/jem.138.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ossowski L., Reich E. Experimental model for quantitative study of metastasis. Cancer Res. 1980 Jul;40(7):2300–2309. [PubMed] [Google Scholar]
- Ossowski L., Reich E. Loss of malignancy during serial passage of human carcinoma in culture and discordance between malignancy and transformation parameters. Cancer Res. 1980 Jul;40(7):2310–2315. [PubMed] [Google Scholar]
- Peltz S. W., Hardt T. A., Mangel W. F. Positive regulation of activation of plasminogen by urokinase: differences in Km for (glutamic acid)-plasminogen and lysine-plasminogen and effect of certain alpha, omega-amino acids. Biochemistry. 1982 May 25;21(11):2798–2804. doi: 10.1021/bi00540a035. [DOI] [PubMed] [Google Scholar]
- Pollack R., Risser R., Conlon S., Rifkin D. Plasminogen activator production accompanies loss of anchorage regulation in transformation of primary rat embryo cells by simian virus 40. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4792–4796. doi: 10.1073/pnas.71.12.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohrlich S. T., Rifkin D. B. Patterns of plasminogen activator production in cultured normal embryonic cells. J Cell Biol. 1977 Oct;75(1):31–42. doi: 10.1083/jcb.75.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stiles C. D., Desmond W., Chuman L. M., Sato G., Saier M. H., Jr Relationship of cell growth behavior in vitro to tumorigenicity in athymic nude mice. Cancer Res. 1976 Sep;36(9 PT1):3300–3305. [PubMed] [Google Scholar]
- Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unkeless J. C., Tobia A., Ossowski L., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):85–111. doi: 10.1084/jem.137.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiman B., Collen D. Molecular mechanism of physiological fibrinolysis. Nature. 1978 Apr 6;272(5653):549–550. doi: 10.1038/272549a0. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Goldberg A. R. Rous-sarcoma-virus-transformed fibroblasts having low levels of plasminogen activator. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3613–3617. doi: 10.1073/pnas.73.10.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
